Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The process of friction stir welding is a significant advance in the field of research on the Friction welding technique known for several decades. This assembly technique has obvious originality since welding is performed in the solid state, which can help eliminate birth defects related to solidification phase compared to conventional welding. The numerical modeling of this type of process is complex, not only in terms of the variety of physical phenomena which must be considered, but also because of the experimental procedure that must be followed in order to verify and validate numerical predictions. In this work, a finite element model is proposed in order to simulate the crack propagation under monotonic loading in different areas of the weld seam of a specimen CT-50 aluminum alloy 6082-T6. Microhardness tests were performed to characterize the Vickers hardness profile in the vicinity of the weld area. Friction stir welding process leads to a decrease of the static mechanical properties relatively to base material. Detailed examination revealed a hardness decrease in the thermo mechanically affected zone and the nugget zone average hardness was found to be significantly lower than the base alloy hardness. Welded specimens show significantly lower lives than base material.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
67--83
Opis fizyczny
Bibliogr. 26 poz., il kolor., rys., wykr.
Twórcy
autor
- Laboratory of Material and Reactive System, Departement of Mechanical Engineering, University of Sidi Bel-Abbes, Sidi Bel-Abbes, Algeria
autor
- Laboratory of Material and Reactive System, Departement of Mechanical Engineering, University of Sidi Bel-Abbes, Sidi Bel-Abbes, Algeria
autor
- Laboratory of Material and Reactive System, Departement of Mechanical Engineering, University of Sidi Bel-Abbes, Sidi Bel-Abbes, Algeria
Bibliografia
- [1] Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Temple-Smith M. P. and Dawes, C. J.: Friction-stir butt weldin, G.B. Patent No. 9125978.8, International patent application, No. PCT/GB92/02203, 1991.
- [2] Ericsson, M. and Sandstrom, R.: Influence of welding speed on the fatigue of friction stir welds and comparison with MIG and TIG, International Journal of Fatigue, 25, 12, 1379-1387, 2003.
- [3] Thomas, W. M. and Nicholas, E.D.: Friction stir welding for the transportation industries, Mater. Des., 18(4-6), 269-73, 1997.
- [4] Moreira, P. M. G. P., de Figueiredo, M. A. V. and de Castro, P. M. S. T.: Fatigue behaviour of FSW and MIG weldments for two aluminium alloys, Theor. Appl. Fract. Mech., 48, (2), 169-177, 2007.
- [5] Moreira, P. M. G. P., de Jesus, A. M. P., Ribeiro, A. S. and de Castro, M. S. T.: Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: a comparison, Theoretical and Applied Fracture Mechanics, 50, 2, 81-91, 2008.
- [6] Kobayashi, Y., Sakuma, M., Tanaka, Y. and Matsuoka, K.: Fatigue strength of friction stir welding joints of aluminium alloy 6082 extruded shape, Welding International, 21, 1, 18-24, 2007.
- [7] Costa, J. D., Ferreira, J. A. M. and Borrego, L. P.: Influence of spectrum loading on fatigue resistance of AA6082 friction stir welds, International Journal of Structural Integrity, 2, 2, 122-134, 2011.
- [8] Jata, K. V., Sankaran, K. K. and Ruschau, J. J.: Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451, Metallurgical and Materials Transactions A, 31, 9, 2181-2192, 2000.
- [9] Wan, L., Huang, Y. and Guo, W.: Mechanical Properties and Microstructure of 6082-T6 Aluminum Alloy Joints by Self-support Friction Stir Welding, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China, 2014.
- [10] Busu, G. and Irving, P. E.: The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints, International Journal of Fatigue, 25, 1, 77-88, 2003.
- [11] Bouchouicha, B.: Contribution `a l’étude de la déchirure ductile et de la propagation des fissures en fatigue dans les joints soudés, PhD Thesis, Djillali Liabes University of Sidi Bel Abbes, 2007.
- [12] Genevois, C.: Genesis of the microstructures during friction stir welding of aluminium alloys of the serie 2000 and 5000 and resulting mechanical behavior, PhD Thesis, Institut National Polytechnique de Grenoble, 2004.
- [13] Adamowski, J.: Analysis of FSW welds made of aluminium alloy AW6082-T6, Global Service Engineering R&D, Ansaldo Energia, Via N. Lorenzi, 8, 16152 Genoa, Italy, 2007.
- [14] Souto Grela, J., Blanco Viana, E. B., Martinez, D. and Piñeiro, E.: Numerical simulation in welding process: optimizing structures with sequence and inertial study, Matériaux & Techniques, 100, 317-326, 2012.
- [15] Feulvarch, E.: Modélisation numérique du soudage par friction malaxage, Thèse de doctorat de l’Université de Saint Etienne, 2005.
- [16] Merzoug, M.: Etude paramétrique du soudage par friction malaxage, PhD Thesis, Djillali Liabes University of Sidi Bel Abbes, 2011.
- [17] Data from Mechanical laboratory of Lille (FRANCE), Laboratoire de mécanique, Université de Lille, FRANCE.
- [18] Harris D, Norman A. F.: Properties of friction stir welded joints: a review of literature, Progress report presented at the sixth PSG Meeting, 17-18, 2003.
- [19] Wan, L., Huang, Y., Guo, W., Lu,S. and Feng, J.: Mechanical Properties and Microstructure of 6082-T6 Aluminum Alloy Joints by Self-support Friction Stir Welding, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
- [20] Scialpi, A., De Filippis, L. A. C. and Cavaliere, P.: Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy, Materials and Design, 28, 4, 1124-1129, 2007.
- [21] Svensson, L. E., Karlsson, L., Larsson, H., Karlsson, B., Fazzini, M. and Karlsson, J.: Microstructure and mechanical properties of friction stir welded aluminium alloys with special reference to AA 5083 and AA 6082, Science and Technology of Welding & Joining, 5, 5, 285-296, 2000.
- [22] ASTM E8-04, Standard Test Methods for Tension Testing of Metallic Materials, 2004.
- [23] Di, S., Yang, X., Luan, G., and Jian, B.: Comparative study on fatigue properties between AA2024-T4 friction stir welds and base materials, Materials Science and Engineering, A 435-436:389-395, 2006.
- [24] Lombard, H., Hatting, D. G., Steuwer, A. and James, M. N.: Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083-H321 aluminium alloy, Eng. Fract. Mech., 75, 341-354, 2008.
- [25] Bussu, G. and Irving, P. E.: The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints, Int. J. Fat., 25, 1, 77-88, 2003.
- [26] Peel, M., Steuwer, A., Preuss, M. and Withers, P. J.: Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta Mater., 51, 4791-4801, 2003.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-922e3bea-c5e6-49ca-980a-673397e6fd35