Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Comparative Analysis of the Inclusion Removal Efficiency of Different Fluxes
Czasopismo
Rocznik
Tom
Strony
53--58
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab., wykr.
Twórcy
autor
- University of Miskolc, Institute of Metallurgy and Foundry Engineering, Miskolc-Egyetemváros, Hungary
autor
- University of Miskolc, Institute of Metallurgy and Foundry Engineering, Department of Foundry
autor
- University of Miskolc, Institute of Metallurgy and Foundry Engineering, Miskolc-Egyetemváros, Hungary
autor
- University of Miskolc, Institute of Metallurgy and Foundry Engineering, Miskolc-Egyetemváros, Hungary
Bibliografia
- [1] Shivkumar, S., Wang, L., & Apelian, D. (1991). Molten metal processing of advanced cast aluminum alloys. The Journal of The Minerals, Metals & Materials Society. 43(1), 26-32. DOI: 10.1007/BF03220114.
- [2] Trojan, P.K., & Fruehan, R. (2008). Inclusion-forming reactions. In ASM Handbook. 15: Casting, 74-83. ASM International. DOI: 10.1361/asmhba0005193.
- [3] Gallo, R. (2017). “I Have Inclusions! Get Me the Cheapest and Best Flux for Cleaning My Melt” - Is This the Best Driven, Cost Saving Approach by a Foundry? AFS Transactions. 125, 97-110.
- [4] Hudson, S.W., & Apelian, D. (2016). Inclusion detection in molten aluminum: current art and new avenues for in situ analysis. International Journal of Metalcasting. 10(3), 315-321. DOI: 10.1007/s40962-016-0030-x.
- [5] Campbell, J. (2006). Entrainment defects. Materials Science and Technology. 22(2), 127-145. DOI: 10.1179/174328406 X74248.
- [6] Cao, X., & Campbell, J. (2005). Oxide inclusion defects in Al-Si-Mg cast alloys. Canadian Metallurgical Quarterly. 44(4), 435-448. DOI: 10.1179/cmq.2005.44.4.435.
- [7] Campbell, J. (2012). Stop pouring, start casting. International Journal of Metalcasting. 6(3), 7-18. DOI: 10.1007/BF03355529.
- [8] Gyarmati, G., Fegyverneki, G., Mende, T., & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157(109925). DOI: 10.1016/j.matchar. 2019.109925.
- [9] Kaufman, J.G., & Rooy, E.L. (2004). The influence and control of porosity and inclusions in aluminum castings. In E. L. Rooy & J. G. Kaufman (Ed.), Aluminum Alloy Castings: Properties, Processes, and Applications. 47-54. ASM International. DOI: 10.1361/aacp2004p047.
- [10] Cao, X.B., Zhao, J., Fan, J.H., Zhang, M.H., Shao, G.J., & Hua, Q. (2014). Influence of casting defects on fatigue behaviour of A356 aluminium alloy. International Journal of Cast Metals Research. 27(6), 362-368. DOI: 10.1179/ 1743133614Y.0000000120.
- [11] Samuel, A.M., & Samuel, F.H. (1992). Various aspects involved in the production of low-hydrogen aluminium castings. Journal of Materials Science. 27(24), 6533-6563. DOI: 10.1007/BF01165936.
- [12] Brůna, M., & Sládek, A. (2011). Hydrogen analysis and effect of filtration on final quality of castings from aluminium alloy AlSi7Mg0,3. Archives of Foundry Engineering. 11(1), 5-10.
- [13] Czerwinski, F. (2017). Modern aspects of liquid metal engineering. Metallurgical and Materials Transactions B. 48(1), 367-393. DOI: 10.1007/s11663-016-0807-6.
- [14] Brown, J.R. (1999). Foseco Non-Ferrous Foundryman’s Handbook. (11th ed.) Oxford: Foseco International Ltd. 72-76.
- [15] Neff, D.V. (2008). Degassing. In ASM Handbook. 15, Casting, 185-193. ASM International. DOI: 10.1361/ asmhba0005353.
- [16] Utigard, T.A., Friesen, K., Roy, R.R., Lim, J., Silny, A., & Dupuis, C. (1998). The properties and uses of fluxes in molten aluminum processing. Journal of The Minerals, Metals & Materials Society. 50(11), 38-43. DOI: 10.1007/s11837-998-0285-7.
- [17] Gallo, R. (2001). Development, Evaluation, and Application of Granular and Powder Fluxes in Transfer Ladles, Crucible, and Reverberatory Furnaces. In 6th International Conference on Molten Aluminum Processing, Nov. 2001 (pp. 55-69.) Orlando: American Foundry Society.
- [18] DasGupta, R. (2008). Approaches to Measurement of Metal Quality. In ASM Handbook. 15, Casting, 1167-1173. ASM International. DOI: 10.31399/asm.hb.v15.a0005 340.
- [19] Fox, S., & Campbell, J. (2000). Visualisation of oxide film defects during solidification of aluminium alloys. Scripta Materialia. 43, 881-886. DOI: 1016/S1359-6462(00)00506-6.
- [20] Djurdjevic, M.B., Odanovic, Z., & Pavlovic-Krstic, J. (2010). Melt quality control at aluminium casting plants. Metallurgical & Materials Engineering. 16(1), 63-76.
- [21] Li, C., Li, J., Mao, Y., & Ji, J. (2017). Mechanism to remove oxide inclusions from molten aluminum by solid fluxes refining method. China Foundry. 14(4), 233-243. DOI: 10.1007/s41230-017-7005-2.
- [22] Ambrová, M., Fellner, P., Gabčová, J., & Sýkorová, A. (2005). Chemical reactions of sulphur species in cryolite-based melts. Chemical Papers. 59, 235-239.
- [23] Gyarmati, G., Fegyverneki, Gy., Mende, T., & Tokár, M. (2019). The effect of fluxes on the melt quality of AlSi7MgCu Alloy. International Journal of Engineering and Management Sciences (IJEMS). 4(1), DOI: 10.21791/IJEMS.2019.1.46.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92290bf6-f02a-4973-b49e-4c7460a27476