PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysing effective thermal conductivity of 2D closed-cell foam based on shrunk Voronoi tessellations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two-dimensional foam is a type of cellular solid materials containing a high volume fraction of pores. The thermal behavior of foam depends strongly on its microscopic structure. In this study, a two-dimensional closed-cell foam model containing randomly distributed air voids and solid walls is designed via a Voronoi diagram enhanced by the shrinking technique to approximately represent the real foam structure. The porosity, pore size and solid wall thickness of the established random foam structure is examined by introducing the so-called shrinking ratio. Subsequently, the effective thermal conductivity of the rebuilt foam model is numerically presented through the finite element analysis. The numerical results obtained are verified by comparison with the available theoretical and experimental results. In the analysis, the effects of porosity, number of pores and thermal conductivity of solid phase in foam structures are investigated respectively to reveal the relationship of geometric parameters and thermal properties of solid phase with effective thermal conductivity of the foam.
Rocznik
Strony
451--470
Opis fizyczny
Bibliogr. 42 poz., rys. kolor.
Twórcy
autor
  • College of Civil Engineering & Architecture Henan University of Technology Zhengzhou, 450001, China
  • Research School of Engineering Australian National University Canberra, 2016, Australia
autor
  • College of Civil Engineering & Architecture Henan University of Technology Zhengzhou, 450001, China
autor
  • College of Civil Engineering & Architecture Henan University of Technology Zhengzhou, 450001, China
autor
  • Research School of Engineering Australian National University Canberra, 2016, Australia
Bibliografia
  • 1. C. Talischi, G.H. Paulino, A. Pereira, I.F.M. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab, Structural and Multidisciplinary Optimization, 45, 3, 309–328, 2012.
  • 2. Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms, SIAM review, 41, 4, 637–676, 1999.
  • 3. H. Wang, Q.-H. Qin, Y. Xiao, Special n-sided Voronoi fiber/matrix elements for clustering thermal effect in natural-hemp-fiber-filled cement composites, International Journal of Heat and Mass Transfer, 92, 228–235, 2016.
  • 4. H. Wang, Q.-H. Qin, Voronoi polygonal hybrid finite elements with boundary integrals for plane isotropic elastic problems, International Journal for Applied Mechanics, 9, 3, 1750031, 2017.
  • 5. N. Dukhan, Metal Foams: Fundamentals and Applications, DEStech Publications, Lancaster, 2013.
  • 6. C. Lautensack, Fitting three-dimensional Laguerre tessellations to foam structures, Journal of Applied Statistics, 35, 9, 985–995, 2008.
  • 7. L.Q. Tang, X.P. Shi, L. Zhang, Z.J. Liu, Z.Y. Jiang, Y.P. Liu, Effects of statistics of cell’s size and shape irregularity on mechanical properties of 2D and 3D Voronoi foams, Acta Mechanica, 225, 4–5, 1361–1372, 2014.
  • 8. C. Redenbach, I. Shklyar, H. Andrä, Laguerre tessellations for elastic stiffness simulations of closed foams with strongly varying cell sizes, International Journal of Engineering Science, 50, 1, 70–78, 2012.
  • 9. Z.Q. Li, J.J. Zhang, Z.H. Wang, Y.Z. Song, L.M. Zhao, Study on the thermal properties of closed-cell metal foams based on Voronoi random models, Numerical Heat Transfer, Part A: Applications, 64, 12, 1038–1049, 2013.
  • 10. Z.Q. Li, J.J. Zhang, J.H. Fan, Z.H. Wang, L.M. Zhao, On crushing response of the three-dimensional closed-cell foam based on Voronoi model, Mechanics of Materials, 68, 85–94, 2014.
  • 11. C. Barbier, P.M. Michaud, D. Baillis, J. Randrianalisoa, A. Combescure, New laws for the tension/compression properties of Voronoi closed-cell polymer foams in relation to their microstructure, European Journal of Mechanics-A/Solids, 45, 110–122, 2014.
  • 12. D. Li, L. Dong, J.-H. Yin, R.S. Lakes, Negative Poisson’s ratio in 2D Voronoi cellular solids by biaxial compression: a numerical study, Journal of Materials Science, 51, 14, 7029–7037, 2016.
  • 13. M.J. Silva, W.C. Hayes, L.J. Gibson, The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids, International Journal of Mechanical Sciences, 37, 11, 1161–1177, 1995.
  • 14. M.J. Silva, L.J. Gibson, The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids, International Journal of Mechanical Sciences, 39, 5, 549–563, 1997.
  • 15. C. Chen, T.J. Lu, N.A. Fleck, Effect of imperfections on the yielding of two-dimensional foams, Journal of the Mechanics and Physics of Solids, 47, 11, 2235–2272, 1999.
  • 16. H.X. Zhu, J.R. Hobdell, A.H. Windle, Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs, Journal of the Mechanics and Physics of Solids, 49, 4, 857–870, 2001.
  • 17. T. Lu, C. Chen, Thermal transport and fire retardance properties of cellular aluminium alloys, Acta Materialia, 47, 5, 1469–1485, 1999.
  • 18. G.-Y. Lu, B.-Y. Su, Z.-Q. Li, Z.-H. Wang, W.-D. Song, H.-P. Tang, Thermal properties of closed-cell aluminum foam with circular pores, Thermal Science, 18, 5, 1619–1624, 2014.
  • 19. T. Sadowski, B. Pankowski, Numerical modelling of two-phase ceramic composite response under uniaxial loading, Composite Structures, 143, 388–394, 2016.
  • 20. J. Kadkhodapour, S. Raeisi, Micro–macro investigation of deformation and failure in closed-cell aluminum foams, Computational Materials Science, 83, 137–148, 2014.
  • 21. X.L. Zhu, S.G. Ai, X.F. Lu, X. Ling, L.X. Zhu, B. Liu, Thermal conductivity of closed-cell aluminum foam based on the 3D geometrical reconstruction, International Journal of Heat and Mass Transfer, 72, 242–249, 2014.
  • 22. T. Fiedler, E. Solórzano, F. Garcia-Moreno, A. Öchsner, I.V. Belova, G.E. Murch, Computed tomography based finite element analysis of the thermal properties of cellular aluminium, Materialwissenschaft und Werkstofftechnik, 40, 3, 139–143, 2009.
  • 23. K.K. Bodla, J.Y. Murthy, S.V. Garimella, Microtomography-based simulation of transport through open-cell metal foams, Numerical Heat Transfer, Part A: Applications, 58, 7, 527–544, 2010.
  • 24. T. Wejrzanowski, J. Skibinski, J. Szumbarski, K.J. Kurzydlowski, Structure of foams modeled by Laguerre–Voronoi tessellations, Computational Materials Science, 67, 216–221, 2013.
  • 25. R. Jafari, M. Kazeminezhad, Microstructure generation of severely deformed materials using Voronoi diagram in Laguerre geometry: Full algorithm, Computational Materials Science, 50, 9, 2698–2705, 2011.
  • 26. H.S.M. Coxeter, Introduction to Geometry, Wiley, New York, 1969.
  • 27. D.H. Xia, S.S. Guo, L. Ren, Study of the reconstruction of fractal structure of closed-cell aluminum foam and its thermal conductivity, Journal of Thermal Science, 21, 1, 77–81, 2012.
  • 28. H.D. Baehr, K. Stephan, Heat and Mass Transfer, Springer, Berlin, 2006.
  • 29. Q.H. Qin, M.V. Swain, A micro-mechanics model of dentin mechanical properties, Biomaterials, 25, 20, 5081–5090, 2004.
  • 30. K.J. Bathe, Finite Element Procedures, Prentice Hall, New Jersey, 1996.
  • 31. Q.H. Qin, Hybrid Trefftz finite-element approach for plate bending on an elastic foundation, Applied Mathematical Modelling, 18, 6, 334–339, 1994.
  • 32. M. Dhanasekar, J. Han, Q.H. Qin, A hybrid-Trefftz element containing an elliptic hole, Finite Elements in Analysis and Design, 42, 14, 1314–1323, 2006.
  • 33. Q.H. Qin, H. Wang, MATLAB and C Programming for Trefftz Finite Element Methods, CRC Press, New York, 2008.
  • 34. Q.H. Qin, Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation, Computer Methods in Applied Mechanics and Engineering, 122, 3–4, 379–392, 1995.
  • 35. H. Wang, Q.H. Qin, FE approach with Green’s function as internal trial function for simulating bioheat transfer in the human eye, Archives of Mechanics, 62, 6, 493–510, 2010.
  • 36. Q.H. Qin, Y.W. Mai, BEM for crack-hole problems in thermopiezoelectric materials, Engineering Fracture Mechanics, 69, 5, 577–588, 2002.
  • 37. X.W. Gao, T.G. Davies, Boundary Element Programming in Mechanics, Cambridge University Press, Cambridge, 2002.
  • 38. J. Randrianalisoa, D. Baillis, C.L. Martin, R. Dendievel, Microstructure effects on thermal conductivity of open-cell foams generated from the Laguerre–Voronoď tessellation method, International Journal of Thermal Sciences, 98, 277–286, 2015.
  • 39. H. Wang, X.J. Zhao, J.S. Wang, Interaction analysis of multiple coated fibers in cement composites by special n-sided interphase/fiber elements, Composites Science and Technology, 118, 117–126, 2015.
  • 40. E. Solórzano, J.A. Reglero, M.A. Rodríguez-Pérez, D. Lehmhus, M. Wichmann, J.A. De Saja, An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method, International Journal of Heat and Mass Transfer, 51, 25, 6259–6267, 2008.
  • 41. S. Kanaun, S.B. Kochekseraii, Conductive properties of foam materials with open or closed cells, International Journal of Engineering Science, 50, 1, 124–131, 2012.
  • 42. L.L. Gong, Y.H. Wang, X.D. Cheng, R.F. Zhang, H.P. Zhang, A novel effective medium theory for modelling the thermal conductivity of porous materials, International Journal of Heat and Mass Transfer, 68, 295–298, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9227eed8-c159-4161-bbde-dcb810cb8eed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.