Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Aluminum (Al) nanoparticles were prepared by the DC arc plasma method in order to study the influence of Al nanoparticles on the thermal decomposition of cyclotrimethylenetrinitramine (RDX). The Al powder was characterized by TEM, BET, XRD, and LSA, and the thermal decomposition of RDX and RDX/nanometer Al were examined by DSC. Based on the DSC curves, the thermal decomposition parameters of the samples were calculated and compared. The results showed that the particles of Al are homogeneous and fine, and that the surface is smooth. The TEM results showed that the nanoparticles are spherical, with an average diameter of approximately 60 nm. The peak temperature of RDX decomposition decreased by 4.36 K at the heating rates of 5, 10, and 20 K/min after the addition of nano-Al powder, and the activation energy for decomposition decreased by about 11 kJ/mol. Furthermore, the critical explosion temperature was also reduced. These observable changes indicate that Al nanoparticles act as catalysts for the thermal decomposition of RDX.
Słowa kluczowe
Rocznik
Tom
Strony
123--133
Opis fizyczny
Bibliogr. 26 poz. rys., tab., wykr.
Twórcy
autor
- Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, China
autor
- Urban and Environmental Science Department, Binzhou University, Binzhou, Shandong 256600, China
autor
- Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, China
autor
- Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, China
autor
- Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, China
autor
- Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, Chin
Bibliografia
- [1] Pantoya M., Granier,J., Combustion Behavior of Highly Energetic Thermites: Nanoversus Micron Composites, Propellants Explos. Pyrotech., 2005, 30(1), 53-62.
- [2] Tillotson T.M., Gash A.E, Simpson R.L, Hrubesh L.W, Satcher J.H, Poco J.F.,Nanostructured Energetic Materials using Sol-Gel Methodologies, J. Non-Cryst. Solids, 2001, 285(1-3), 338-345.
- [3] Yang G., Nie F., Huang H., Zhao L., Pang W., Preparation and Characterization of Nano-TATB Explosive, Propellants Explos, Pyrotech., 2006, 31(5), 390-394.
- [4] Davin P.G., Klapötke T.M., Nanoscale Aluminum − Metal Oxide (Thermite) Reactions for Application in Energetic Materials, Cent. Eur. J. Energ. Mater., 2010, 7(2), 115-129.
- [5] Armstrong R.W., Baschung B., Booth D.W., Samirant M., Enhanced Propellant Combustion with Nanoparticles, Nano Lett., 2003, 3(2), 253-255.
- [6] Sathiskumar P.S., Thomas C.R., Giridhar Madras, Solution Combustion Synthesis of Nanosized Copper Chromite and its Use as Burn Rate Modifier in Solid Propellants, Ind. Eng. Chem. Res., 2012, 51(30), 10108-10116.
- [7] Kanel G.I., Utkin A.V., Razzorenov S.V., Rate of the Energy Release in High Explosives Containing Nano-size Boron Particles, Cent. Eur. J. Energ. Mater. 2009, 6(1), 15-30.
- [8] Ma Z., Li F., Bai H., Effect of Fe2O3 in Fe2O3/AP Composite Particles on Thermal Decomposition of AP and on Burning Rate of the Composite Propellant. Propellants Explos. Pyrotech., 2006, 31(6), 447-451.
- [9] Wang Y.P, Zhu J.W., Yang X.J., Lu L.D., Wang X., Preparation of NiO Nanoparticles and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate, Thermochim. Acta, 2005, 437(1-2), 106-109.
- [10] Shen S.M., Chen S.. Wu B.H., The Thermal Decomposition of Ammonium Perchlorate (AP) Containing a Burning Rate Modifier, Thermochim. Acta, 1993, 223(1), 135-143.
- [11] Liu L., Li F., Tan L., Ming L., Yi Y., Effects of Nanometer Ni, Cu, Al and NiCu Powders on the Thermal Decomposition of Ammonium Perchlorate, Propellants Explos, Pyrotech., 2004, 29(1), 34-38.
- [12] Teipel U., Energetic Materials: Particle Processing and Characterization, Wiley-VCH , Weinheim, 2006, pp. 267-270.
- [13] Mostert F.J., Toit C., Measuring the Blast Output of Aluminized Explosive Charges in a Semi-Confined Environment, Insensitive Munitions & Energetic Materials Technology Symposium, Munich, Germany, October 11-14, 2010, 1-8.
- [14] Florczak B., A Comparison of Properties of Aluminized Composite Propellants Containing HMX and FOX-7, Cent. Eur. J. Energ. Mater., 2008, 5(3-4), 103-111.
- [15] Gogulya M.F., Makhov M.N. , Dolgoborodov A.Y., Brazhnikov M.A., Arkhipov V.I., Shchetinin V.G., Mechanical Sensitivity and Detonation Parameters of Aluminized Explosives, Combust., Explos. Shock Waves (Eng. Transl.), 2004, 40(4), 445-457.
- [16] Reshetov A.A., Shneider V.B., Yavorovsk N.A., Ultradispersed Aluminum’s Influence on the Speed of Detonation of Hexogen, Mendeleev All-Union Society Abstracts, 1, 1984.
- [17] Ivanov Y.F., Osmonoliev M.N., Sedoi V.S., Arkhipov, V.A., Bondarchuk S.S., Vorozhtsov A.B., Korotkikh A.G., Kuznetsov V.T., Productions of Ultra-Fine Powders and Their Use in High Energetic Compositions, Propellants Explos. Pyrotech., 2003, 28(6), 319-333.
- [18] Mench M.M., Kuo K.K., Yeh C.L., Lu Y.C, Comparison of Thermal Behavior of Regular and Ultra-Fine Aluminum Powders (Alex) Made from Plasma Explosion Process, Comb. Sci. Tech, 1998, 135(1-6), 269-292.
- [19] Jones D.E.G., Brousseau P., Fouchard R.C., Turcotte A.M., Kwok Q.S.M, Thermal Characterization of Passivated Nanometer Size Aluminum Powders, J. Therm. Anal. Calorim., 2000, 61(3), 805-818.
- [20] Brousseau P., Anderson J.C., Nanometric Aluminum in Explosives, Propellants Explos. Pyrotech., 2002, 27(5), 300-306.
- [21] Weibel A., Bouchet R., Boulc’h F., Knauth P., The Big Problem of Small Particles: A Comparison of Methods for Determination of Particle Size in Nanocrystalline Anatase Powders, Chem. Mater., 2005, 17(9), 2378-2385.
- [22] Patterson A.L., The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev., 1939, 56(10), 978-982.
- [23] McKenney R.L., Krawietz J.T.R., Binary Phase Diagram Series: HMX/RDX, J. Energ. Mater., 2003, 21(3), 141-166.
- [24] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem. 1957, 29(11), 1702-1706.
- [25] Zhang T.L., Hu R.Z., Xie Y., Li F.P., The Estimation of Critical Temperatures of Thermal Explosion for Energetic Materials using Non-isothermal DSC, Thermochim. Acta, 1994, 244(1), 171-176.
- [26] Sovizi M.R., Hajimirsadeghi S.S., Naderizadeh B., Effect of Particle Size on Thermal Decomposition of Nitrocellulose, J. Hazard. Mater., 2009, 168(2-3), 1134-1139.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9225f4dc-d0a5-4aa2-94b6-d3b26542423a