PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust Kalman filter-based fault-tolerant integrated Baro-Inertial-GPS altimeter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As a result of the development of modern vehicles, even higher accuracy standards are demanded. As known, Inertial Navigation Systems have an intrinsic increasing error which is the main reason of using integrating navigation systems, where some other sources of measurements are utilized, such as barometric altimeter due to its high accuracy in short times of interval. Using a Robust Kalman Filter (RKF), error measurements are absorbed when a Fault Tolerant Altimeter is implemented. During simulations, in order to test the Nonlinear RKF algorithm, two kind of measurement malfunction scenarios have been taken into consideration; continuous bias and measurement noise increment. Under the light of the results, some recommendations are proposed when integrated altimeters are used.
Rocznik
Strony
673--686
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wzory
Twórcy
  • Politecnico di Milano, School of Industrial and Information Engineering, Via Raffaele Lambruschini, 15, 20156 Milano, Italy
  • Istanbul Technical University, Aeronautics and Astronautics Faculty, 34467 Sarıyer, Istanbul, Turkey
Bibliografia
  • [1] Kayton, M., Fried, W. R. (1997). Avionics navigation systems. 2nd ed., New York: John Willey & Sons, Inc.
  • [2] Hajiyev, C., Saltoglu, R. (2004). RKF-based fault tolerant integrated INS/radar altimeter. Aircraft Engineering and Aerospace Technology: An International Journal, 76(1), 38-46.
  • [3] Rogers, R. M. (2007). Applied Mathematics in Integrated Navigation Systems. 3rd ed., Reston, VA, USA, American Institute of Aeronautics and Astronautics, Inc.
  • [4] Hajiyev, C. (2007). Adaptive filtration algorithm with the filter gain correction applied to integrated INS/radar altimeter. Proc. of the Institution of Mechanical Engineers (IMechE), Part G, Journal of Aerospace Engineering, 221, 847-855.
  • [5] Sokolovic, V., Dikic, G., Stancic, R. (2014). Adaptive error damping in the vertical channel of the INS/GPS/Baro-altimeter integrated navigation system. Scientific Technical Review, 64(2), 14-20.
  • [6] Nobahari, H., Mohammadkarimi, H. (2017). Application of model aided inertial navigation for precise altimetry of Unmanned Aerial Vehicles in ground proximity. Aerospace Science and Technology, 69, 650-658.
  • [7] Contreras, A. M., Hajiyev, C. (2018). Integration of baro-inertial-GPS altimeter via complementary Kalman filter. Karakoç T., Colpan C., Şöhret Y. (eds). Advances in Sustainable Aviation. Springer, Cham, 251-268.
  • [8] Hajiyev, C. (2012). Fault tolerant integrated radar/inertial altimeter based on nonlinear robust adaptive Kalman filter. Aerospace Science and Technology, 17(1), 40-49.
  • [9] Geng, K. K., Chulin, N. A. (2017). Applications of multi-height sensors data fusion and fault-tolerant Kalman filter in integrated navigation system of UAV. Procedia Computer Science, 103, 231-238.
  • [10] Zhukovskiy, A. P., Rastorguev, V. V. (1998). Complex Radio Navigation and Control Systems of Aircraft. Moscow: MAI.
  • [11] Contreras, A. M., Hajiyev, C. (2019). Comparison of Conventional and Robust Adaptive Kalman Filters Based Integrated Altimeters. Proc. of the 20th International Carpathian Control conference (ICCC-2019), Wieliczka, Poland, May, 2019, IEEE, 6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-921ddf6f-7805-4aa4-a2d2-b601fe975b8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.