PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of pre-jamming indication parameter during blind backfilling technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydraulic blind backfilling is used to reduce subsidence problems above old underground water-logged coal mines. This paper describes experimental research on a fully transparent model of a straight underground mine gallery. An automatic data acquisition systemwas installed in the model to continuously record the sand and water flowrates along with the inlet pressure of the slurry near the model's inlet. Pressure signature graphs and pressure loss curves with bed advancement under different flow conditions are examined. Pressure signature analyses for various flowrates and sand slurry concentrations are conducted to evaluate a pre-jamming indication parameter, which could be used to indicate the arrival of the final stage of filling.
Rocznik
Strony
100--107
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Department of Mining Engineering, I.I.T. Kharagpur, West Bengal, 721302, India
autor
  • Department of Mining Engineering, I.I.T. Kharagpur, West Bengal, 721302, India
  • Department of Mathematics, I.I.T. Kharagpur, West Bengal, 721302, India
Bibliografia
  • 1. Akhlaghi Amiri, H. A., & Hamouda, A. A. (2013). Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dualpermeability porous medium. International Journal of Multiphase Flow, 52, 22-34.
  • 2. Akhlaghi Amiri, H. A., & Hamouda, A. A. (2014). Pore-scale modeling of nonisothermal two phase flow in 2D porous Media: Influences of viscosity, capillarity, wettability and heterogeneity. International Journal of Multiphase Flow, 61, 14-27.
  • 3. Cempa-Balewicz, M., Laczny, M., Smolinski, A., & Iwaszenko, S. (2013). Equilibrium model of steam gasification of coal. Journal of Sustainable Mining, 12(2), 21-28.
  • 4. Dhir, R., Dern, R. R., & Mavor, M. J. (1991). Economic and reserve evaluation of coal bed methane reservoirs. Texas, USA: Society of petroleum engineers, Paper No. 22024.
  • 5. Gray, I. (1987). The physical process of gas storage in movement in coal seams. Society of Petroleum Engineers & Reservoir Engineers.
  • 6. Harpalani, S., & Schraufnagel, R. A. (1990). Shrinkage of coal matrix with release of gas and its impact on permeability of coal. Journal of Fuel, 69, 551-556.
  • 7. Harpalani, S., Zhao, X., & Farmer, I. W. (1992). .Mechanics of gas flow in coal - A laboratory investigation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 29(2), A94.
  • 8. Holditch, S. A. (1989). Enhanced recovery of coal bed methane through hydraulic fracturing. In SPE annual technical conference and exhibition. Houston, Texas: Pub: Society of Petroleum Engineers.
  • 9. Janoszek, T., Laczny, M. J., Stanczyk, K., Smolinski, A., & Wiatowski, M. (2013). Modeling of gas flow in the underground coal gasification process and its interactions with the rock environment. Journal of Sustainable Mining, 12(2), 8-20.
  • 10. Kendall, P. F., & Briggs, H. (1993). The formation of rock joints and the cleats of coal. Royal Society of Edinburgh, 53, 164-187.
  • 11. Krause, E., & Pokryszka, Z. (2013). Investigations on methane of closed coal mines. Journal of Sustainable Mining, 12(2), 40-45.
  • 12. MacDonald, G. J. (1990). The future of methane as an energy resource (Vol. 15). Annual Review of Energy. Virginia, USA.
  • 13. Mcculloch C. M., Duel M., Jeran P. W.., Cleats in Bituminous Coal Bed, Reports of Investigations No. 7910, US Bureau of Mines.
  • 14. Sereshki, F., Aziz, N., & Porter, I. (2003). Impact of coal permeability on gas sorption and coal volume change. In Proceedings of the 7th annual environmental engineering research event conference, Marysville, Victoria, Australia (pp. 333-342).
  • 15. Society of Composite Energy. (2014). Mathematical modeling of methane flow in coal matrix using COMSOL. Retrieved June 4, 2016, from http://www.ems.psu.edu/~elsworth/courses/EGEE520/2009Deliverables/reports/Hemant__Spring09_EGEE_520_Modelling_Methane.pdf.
  • 16. Soeder, D. J. (1991). The effects of overburden stress on coal bed methane production. Tec book, Geology in Coal Resources Utilization.
  • 17. Solano, W. A., Mastalerza, M., & Schimmelmann, A. (2007). Cleats and their relation to geologic lineaments and coal bed methane potential in Pennsylvanian coals in Indiana. International Journal of Coal Geology, 72, 187-208.
  • 18. Wang, J., Wu, R., & Zhang, P. (2015). Characteristics and applications of gas desorption with excavation disturbances in coal mining. International Journal of Coal Science & Technology, 2, 30-37.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92193863-f58a-4a19-aa63-24fea5ee482d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.