PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Change of silica luminescence due to fast hydrogen ion bombardment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Kudowa Summer School „Towards Fusion Energy” (12th ; 9-13.06.2014 ; Kudowa Zdrój, Poland)
Języki publikacji
EN
Abstrakty
EN
This paper deals with the luminescence of silica (KV-type) induced by beam of hydrogen ions with the energy of 210 keV per nucleon. An average implantation dose of up to 3.5 × 1021 cm–3 (5 × 1010 Gy) was accumulated during irradiation over an extended period. The luminescent spectra consisted of the blue band (maximum at 456 nm) and the red band (650 nm) in the visible range. It was shown that increase in the absorption dose had an effect on the silica luminescence. It was found that the most significant changes in the spectrum occurred during the dose accumulation in the region of 550–700 nm. The shape of the spectrum of the luminescent radiation in this wavelength range was affected both by the oxygen deficient centres (blue band) and non-bridging oxygen hole centers (red band). Mathematical processing of the experimental spectra permitted to identify contributions to the luminescent radiation coming from both types of defects.
Czasopismo
Rocznik
Strony
289--292
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
  • V. N. Karazin Kharkiv National University, 31 Kurchatov Ave., 61108 Kharkiv, Ukraine, Tel./Fax: +38 057 335 3610
  • V. N. Karazin Kharkiv National University, 31 Kurchatov Ave., 61108 Kharkiv, Ukraine, Tel./Fax: +38 057 335 3610
  • V. N. Karazin Kharkiv National University, 31 Kurchatov Ave., 61108 Kharkiv, Ukraine, Tel./Fax: +38 057 335 3610
Bibliografia
  • 1. Costley, A. E., Sugie, T., Vayakis, G., & Walker, C. I. (2005). Technological challenges of ITER diagnostics.Fusion Eng. Des., 74, 109–119. DOI: 10.1016/j.fusengdes.2005.08.026.
  • 2. Gonzalez, S. M., Morono, A., & Hodgson, E. R.(2005). Optical and electrical degradation of H+ implanted KS-4V quartz glass. Fusion Eng. Des., 74,831–834. DOI: 10.1016/j.fusengdes.2005.06.191.
  • 3. Cannas, M., Vaccaro, L., & Boizot, B. (2006). Spectroscopic parameters related to non-bridging oxygen hole centers in amorphous-SiO2. J. Non-Cryst. Solid, 352, 203–208. DOI: 10.1016/j.jnoncrysol.2005.12.001.
  • 4. Salh, Roushdey, & Fitting, H. -J. (2007). Mechanism of radiation-induced defects in SiO2: The role of hydrogen. Phys. Status Solidi (c), 4(3), 901–904. DOI: 10.1002/pssc.200673717.
  • 5. Kalantaryan, O. V., Kononenko, S. I., & Zhurenko, V. P. (2013). Ionoluminescence of silica bombarded by 420 keV molecular hydrogen ions. Funct. Mater., 20(4), 462–465.
  • 6. Kalantaryan, O. V., Kononenko, S. I., & Muratov, V. I. (2000). Distance-monitoring of absorption dose on materials under ion irradiation. Plasma Fusion Res., 3, 274–276.
  • 7. Jaque, F., & Townsend, P. D. (1981). Luminescence during ion implantation of silica. Nucl. Instrum. Methods, 182/183, 781–786.
  • 8. Kononenko, S. I., Kalantaryan, O. V., Muratov, V. I., & Zhurenko, V. P. (2007). Silica luminescence induced by fast light ions. Radiat. Meas., 42, 751–754. DOI: 10.1016/j.radmeas.2007.02.061.
  • 9. Kalantaryan, O., Kononenko, S., Zhurenko, V., & Zheltopyatova, N. (2014). Fast ion induced luminescence of silica implanted by molecular hydrogen. Funct. Mater., 21(4), 26–30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92164a13-feec-4748-9168-20685bc2f9bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.