PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Determination of crack initiation and propagation in two disc shaped specimens using the improved maximum tangential stress criterion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The crack initiation angle and propagation path for two different disc shaped test specimens (i.e., SCB and CBD specimen) are investigated experimentally and theoretically. The Maximum Tangential Stress (MTS) criterion does not calculate the crack initiation angle in SCB and CBD specimens correctly. Moreover, at the angles after occurrence of pure mode II, where the stress intensity factor of mode I becomes negative, this criterion is not applicable. Therefore, in this research work, Improved MTS (IMTS) criterion which has been implemented in the extended finite element method and is applicable under tensile and compressive loading conditions to examine the crack propagation path in the aforementioned disc shaped specimens. Furthermore, an experimental study on a cracked Brazilian disc specimen has been conducted at different angles. Results of IMTS criterion in these specimens show that the crack propagation path and the crack initiation angle can be predicted theoretically by using IMTS criterion.
Rocznik
Strony
469--480
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
  • Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Mining Engineering; Isfahan University of Technology (IUT), Isfahan, Iran
autor
  • Department of Mining Engineering; Isfahan University of Technology (IUT), Isfahan, Iran
  • Department of Civil Engineering; Isfahan University of Technology (IUT), Isfahan, Iran
Bibliografia
  • 1. Al-Shayea N.A., 2005, Crack propagation trajectories for rocks under mixed mode I-II fracture, Engineering Geology, 81, 84-97
  • 2. Aliha M., Ayatollahi M., Smith D., Pavier M., 2010, Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading, Engineering Fracture Mechanics, 77, 2200-2212
  • 3. Atkinson C., Smelser R., Sanchez J., 1982, Combined mode fracture via the cracked Brazilian disk test, International Journal of Fracture, 18, 279-291
  • 4. Awaji H., Sato S., 1978, Combined mode fracture toughness measurement by the disk test, Journal of Engineering Materials and Technology, 100, 175-182
  • 5. Ayatollahi M., Aliha M., 2008, On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials, Engineering Fracture Mechanics, 75, 4631-4641
  • 6. Babanouri N., Nasab S.K., Baghbanan A., Mohamadi H.R., 2011, Over-consolidation effect on shear behavior of rock joints, International Journal of Rock Mechanics and Mining Sciences, 48, 1283-1291
  • 7. Belytschko T., Black T., 1999, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, 45, 601-620
  • 8. Bobet A., 1997, Fracture Coalescence in Rock Materials: Experimental Observations and Numerical Predictions, Massachusetts Institute of Technology
  • 9. Bobet A., Einstein H.H., 1998, Numerical modeling of fracture coalescence in a model rock material, International Journal of Fracture, 92, 221-252
  • 10. Budyn E., Zi G., Mo¨es N., Belytschko T., 2004, A method for multiple crack growth in brittle materials without remeshing, International Journal for Numerical Methods in Engineering, 61, 1741-1770
  • 11. Campilho R., Banea M., Chaves F., Da Silva L., 2011, Extended Finite Element Method for fracture characterization of adhesive joints in pure mode I, Computational Materials Science, 50, 1543-1549
  • 12. Chen C.-S., Pan E., Amadei B., 1998, Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method, International Journal of Rock Mechanics and Mining Sciences, 35, 195-218
  • 13. Choi S., Haberfield C., Johnston I., 1988, Determining the tensile strength of soft rock, Geotechnical Engineering, 19
  • 14. Chong K.P., Kuruppu M.D., Kuszmaul J.S., 1987, Fracture toughness determination of layered materials, Engineering Fracture Mechanics, 28, 43-54
  • 15. Dolbow J.E., 1999, An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics, Northwestern University
  • 16. Eftekhari M., Baghbanan A., Hashemolhosseini H., 2014, Determining stress intensity factor for Cracked Brazilian Disc using extended Finite Element Method, International Journal of Engineering Science, 3, 890-893
  • 17. Eftekhari M., Baghbanan A., Hashemolhosseini H., 2015a, Extended finite element simulation of crack propagation in Cracked Brazilian Disc, Journal of Mining and Environment, 6, 95-102
  • 18. Eftekhari, M., Baghbanan, A., Hashemolhosseini, H., 2015b, Fracture propagation in a cracked semicircular bend specimen under mixed mode loading using extended finite element method, Arabian Journal of Geosciences, 8, 9635-9646
  • 19. Eftekhari M., Baghbanan A., Hashemolhosseini H., 2016, Crack propagation in rock specimen under compressive loading using extended finite element method, Arabian Journal of Geosciences, 9, 1-10
  • 20. Eftekhari M., Baghbanan A., Hashemolhosseini H., Amrollahi H., 2015c, Mechanism of fracture in macro-and micro-scales in hollow centre cracked disc specimen, Journal of Central South University of Technology, 22, 4426-4433
  • 21. Erdogan F., Sih G., 1963, On the crack extension in plates under plane loading and transverse shear, Journal of Basic Engineering, 85, 519
  • 22. Fan C., Jing X.Q., 2013, Numerical study of crack propagation path in three-point bending beam using Extended Finite Element Method, Applied Mechanics and Materials, 353-356, 3615-3618
  • 23. Fowell R., 1995, Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 57-64
  • 24. Ghazvinian A., Nejati H.R., Sarfarazi V., Hadei M.R., 2013, Mixed mode crack propagation in low brittle rock-like materials, Arabian Journal of Geosciences, 6, 4435-4444
  • 25. Grassl P., Rempling R., 2007, Influence of volumetric-deviatoric coupling on crack prediction in concrete fracture tests, Engineering Fracture Mechanics, 74, 1683-1693
  • 26. Haeri H., Shahriar K., Marji M.F., Moarefvand P., 2014, Cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression, Journal of Central South University of Technology, 21, 2404-2414
  • 27. Hussain M., Pu S., Underwood J., 1974, Strain energy release rate for a crack under combined mode I and mode II, Fracture Analysis, 1, 560
  • 28. Huynh D., Belytschko T., 2009, The extended finite element method for fracture in composite materials, International Journal for Numerical Methods in Engineering, 77, 214-239
  • 29. Isaksson P., St˚ahle P., 2002, Mode II crack paths under compression in brittle solids – a theory and experimental comparison, International Journal of Solids and Structures, 39, 2281-2297
  • 30. Kuruppu M., Obara Y., Ayatollahi M., Chong K., Funatsu T., 2015, ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring, 2007-2014, Springer, 107-114
  • 31. Kuruppu M.D., Chong K.P., 2012, Fracture toughness testing of brittle materials using semicircular bend (SCB) specimen, Engineering Fracture Mechanics, 91, 133-150
  • 32. Lin Q., Fakhimi A., Haggerty M., Labuz J., 2009, Initiation of tensile and mixed-mode fracture in sandstone, International Journal of Rock Mechanics and Mining Sciences, 46, 489-497
  • 33. Liu H., Kou S., Lindqvist P.-A., Tang C., 2007, Numerical modelling of the heterogeneous rock fracture process using various test techniques, Rock Mechanics and Rock Engineering, 40, 107-144
  • 34. Mergheim J., Kuhl E., Steinmann P., 2005, A finite element method for the computational modelling of cohesive cracks, International Journal for Numerical Methods in Engineering, 63, 276-289
  • 35. Moes N., Dolbow J., Belytschko T., 1999, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46, 131-150
  • 36. Nuismer R., 1975, An energy release rate criterion for mixed mode fracture, International Journal of Fracture, 11, 245-250
  • 37. Palaniswamy K., Knauss W., 1972, Propagation of a crack under general, in-plane tension, International Journal of Fracture, 8, 114-117
  • 38. Sharafisafa M., Nazem M., 2014, Application of the distinct element method and the extended finite element method in modelling cracks and coalescence in brittle materials, Computational Materials Science, 91, 102-121
  • 39. Shen B., Stephansson O., 1994, Modification of the G-criterion for crack propagation subjected to compression, Engineering Fracture Mechanics, 47, 177-189
  • 40. Shiryaev A., Kotkis A., 1983. Methods for determining fracture toughness of brittle porous materials, Industrial Laboratory, 48, 917-918
  • 41. Sih G.C., 1974, Strain-energy-density factor applied to mixed mode crack problems, International Journal of Fracture, 10, 305-321
  • 42. Singh I., Mishra B., Bhattacharya S., Patil R., 2012, The numerical simulation of fatigue crack growth using extended finite element method, International Journal of Fatigue, 36, 109-119
  • 43. Song L., Huang S., Yang S., 2004, Experimental investigation on criterion of three-dimensional mixed-mode fracture for concrete, Cement and Concrete Research, 34, 913-916
  • 44. Theocaris P., Andrianopoulos N., 1982, A modified strain-energy density criterion applied to crack propagation, Journal of Applied Mechanics, 49, 81-86
  • 45. Thiercelin M., 1989, Fracture toughness and hydraulic fracturing, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 177-183
  • 46. Thiercelin, M., Roegiers, J., 1986, Fracture toughness determination with the modified ring test, International Symposium on Engineering in Complex rock Formations, Beijing, China, 1-8
  • 47. Wang Q., Jia X., Kou S., Zhang Z., Lindqvist P.-A., 2004, The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results, International Journal of Rock Mechanics and Mining Sciences, 41, 245-253
  • 48. Wang Q.-Z., Xing L., 1999, Determination of fracture toughness K IC by using the flattened Brazilian disk specimen for rocks, Engineering Fracture Mechanics, 64, 193-201
  • 49. Wu Z., Wong L.N.Y., 2012, Frictional crack initiation and propagation analysis using the numerical manifold method, Computers and Geotechnics, 39, 38-53
  • 50. Xeidakis G., Samaras I., Zacharopoulos D., Papakaliatakis G., 1997, Trajectories of unstably growing cracks in mixed mode I-II loading of marble beams, Rock Mechanics and Rock Engineering, 30, 19-33
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92158d59-4a79-4ad7-b672-c1a7cd915446
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.