Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
Abstrakty
Environmental contamination is an urgent topic to be solved for sustainable society. Among various pollutants, microorganisms are believed to be the most dangerous and difficult to be completely inactivated. In this research, a new hybrid photoreactor assisted with rotating magnetic field (RMF) has been proposed for the efficient removal of two types of bacteria, i.e., gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis. Three self-synthesized photocatalysts were used, based on commercial titanium(IV) oxide – P25, homogenized and then modified with copper by photodeposition, as follows: 0.5 Cu@HomoP25, 2.0 Cu@HomoP25 and 5.0 Cu@HomoP25 containg 0.5, 2.0 and 5.0 wt% of deposited copper, respectively. The response surface methodology (RSM) was employed to design the experiments and to deteremine the optimal conditions. The effects of various parameters such as copper concentration [% w/w], and treatment time [h] and frequency of RMF [Hz] were studied. Results: analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model (R2 = 0:86 for E. coli and R2 = 0:69 for S. epidermidis). Experimental results showed that with increasing copper concentration, time and decreasing of frequency of RMF, the removal efficiency was increased. Accordingly, the water disinfection efficiency of 100% in terms of the independent variables was optimized, including copper concentration c = 5% and 2.5% w/w, time t = 3 h and 1.3 h and frequency of rotating magnetic field f = 50 Hz and 26.6 for E.coli and S. epidermidis, respectively. This study showed that response surface methodology is a useful tool for optimizing the operating parameters for photocatalytic disinfection process.
Rocznik
Tom
Strony
art. no. e22
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastow 42, 71-065 Szczecin, Poland
autor
- Hokkaido University, Institute for Catalysis (ICAT), N21, W9, 001-0021 Sapporo, Japan
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastow 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastow 42, 71-065 Szczecin, Poland
autor
- Hokkaido University, Institute for Catalysis (ICAT), N21, W9, 001-0021 Sapporo, Japan
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastow 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Burkett H.D., Faison J.H., Kohl H.H., Wheatley W.B., Worley S.D., Bodor N., 1981. A novel chloramine compound for water disinfection. J. Am. Water Resour. Assoc., 17, 874–876. DOI: 10.1111/j.1752-1688.1981.tb01311.x.
- 2. Djurišić A.B., He Y., Ng A.M.C., 2020. Visible-light photocatalysts: Prospects and challenges. APL Mater., 8, 030903. DOI: 10.1063/1.5140497.
- 3. Gkantzou E., Patila M., Stamatis H., 2018. Magnetic microreactors with immobilized enzymes – from assemblage to contemporary applications. Catalysts, 8, 282. DOI: 10.3390/catal8070282.
- 4. Gong M., Xiao S., Yu X., Dong C., Ji J., Zhang D., Xing M., 2019. Research progress of photocatalytic sterilization over semiconductors. RSC Adv., 9, 19278–19284. DOI: 10.1039/c9ra01826c.
- 5. Habibi-Yangjeh A., Asadzadeh-Khaneghah S., Feizpoor S., Rouhi A., 2020. Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses? J. Colloid Interface Sci., 580, 503–514. DOI: 10.1016/j.jcis.2020.07.047.
- 6. Jabłońska J., Dubrowska K., Gliźniewicz M., Paszkiewicz O., Augustyniak A., Grygorcewicz B., Konopacki M., Markowska-Szczupak A., Kordas M., Dołęgowska B., Rakoczy R., 2022. Chapter Two – The use of the electromagnetic field in microbial process bioengineering, In: Gadd G.M., Sariaslani S. (Eds.), Advances in Applied Microbiology. Academic Press, 121, 27–72. DOI: 10.1016/bs.aambs.2022.08.002.
- 7. Kiwi J., 1983. Magnetic field effects on photosensitized electron transfer reactions in the presence of titanium dioxide and cadmium sulfide-loaded particles. J. Phys. Chem., 87, 2274–2276. DOI: 10.1021/j100236a005.
- 8. Konopacki M., Rakoczy R., 2019. The analysis of rotating magnetic field as a trigger of Gram-positive and Gramnegative bacteria growth. Biochem. Eng. J., 141, 259–267. DOI: 10.1016/j.bej.2018.10.026.
- 9. Kumar A., Pandey G., 2017. A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J., 1, 106–114. DOI: 10.15406/mseij.2017.01.00018.
- 10. Kumari M., Gupta S.K., 2019. Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP) – An endeavor to diminish probable cancer risk. Sci. Rep. 9, 18339. DOI: 10.1038/s41598-019-54902-8.
- 11. Li Q., Mahendra S., Lyon D.Y., Brunet L., Liga M.V., Li D., Alvarez P.J.J., 2008. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res., 18, 4591–4602. DOI: 10.1016/j.watres.2008.08.015.
- 12. Lin L., Jiang W., Xu X., 2020. A critical review of the application of electromagnetic fields for scaling control in water systems: mechanisms, characterization, and operation. NPJ Clean Water, 3, 25. DOI: 10.1038/s41545-020-0071-9.
- 13. Maness P.C., Smolinski S., Blake D.M., Huang Z., Wolfrum E.J., Jacoby W.A., 1999. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol., 65, 4094–4098. DOI: 10.1128/AEM.65.9.4094-4098.1999.
- 14. Manimegalai S., Vickram S., Deena S.R., Rohini K., Thanigaivel S., Manikandan S., Subbaiya R., Karmegam N., Kim W., Govarthanan M., 2023. Carbon-based nanomaterial interven- tion and efficient removal of various contaminants from effluents – A review. Chemosphere, 312, 137319. DOI: 10.1016/j.chemosphere.2022.137319.
- 15. McMichael S., Fernández-Ibáñez P., Byrne J.A., 2021. A re- view of photoelectrocatalytic reactors for water and wastewater treatment. Water, 13, 1198. DOI: 10.3390/w13091198.
- 16. Meyer H.P., Minas W., Schmidhalter D., 2017. Industrial-scale fermentation, In: Wittmann C., Liao J.C. (Eds.), Industrial biotechnology. Wiley-VCH Verlag GmbH & Co. KGaA, New York, 1–53. DOI: 10.1002/9783527807833.ch1.
- 17. Noga J., Wolbring G., 2012. The economic and social benefits and the barriers of providing people with disabilities accessible clean water and sanitation. Sustainability, 4, 3023–3041. DOI: 10.3390/su4113023.
- 18. Pandey N., Thakur C., 2020. Statistical comparison of response surface methodology – based central composite design and hybrid central composite design for paper mill wastewater treat- ment by electrocoagulation. Process Integr. Optim. Sustain., 4, 343–359. DOI: 10.1007/s41660-020-00123-w.
- 19. Paszkiewicz O., Wang K., Rakoczy R., Kordas M., Leniec G., Kowalska E., Markowska-Szczupak A., 2022. Antimicrobial properties of pristine and Pt-modified titania P25 in rotating magnetic field conditions. Chem. Eng. Process. Process Intensif., 178, 109010. DOI: 10.1016/j.cep.2022.109010.
- 20. Rakoczy R., Kordas M., Markowska-Szczupak A., Konopacki M., Augustyniak A., Jabłońska J., Paszkiewicz O., Dubrowska K., Story G., Story A., Ziętarska K., Sołoducha D., Borowski T., Roszak M., Grygorcewicz B., Dołęgowska B., 2021. Studies of a mixing process induced by a rotating magneticfield with the application of magnetic particles. Chem. Process Eng., 42, 157–172. DOI: 10.24425/cpe.2021.138922.
- 21. Rakoczy R., Masiuk S., 2011. Studies of a mixing process induced by a transverse rotating magnetic field. Chem. Eng. Sci., 66, 2298–2308. DOI: 10.1016/j.ces.2011.02.021.
- 22. Rychtowski, P., Paszkiewicz, O., Román-Martínez M.C., Lillo-Ródenas M.Á., Markowska-Szczupak A., Tryba B., 2022. Impact of TiO2 Reduction and Cu doping on bacteria inactivation under artificial solar light irradiation. Molecules, 27, 9032. DOI: 10.3390/molecules27249032.
- 23. Srivastav A.L., Patel N., Chaudhary V.K., 2020. Disinfection byproducts in drinking water: Occurrence, toxicity and abatement. Environ. Pollut., 267, 115474. DOI: 10.1016/j.envpol.2020. 115474.
- 24. Sun Y., O’Connell D.W., 2022. Application of visible light active photocatalysis for water contaminants: A review. Water Environ. Res., 94, e220781. DOI: 10.1002/wer.10781.
- 25. Upadhyaya A., Rincón G., 2019. Visible-light-active noble-metal photocatalysts for water disinfection: A review. J. Water Resour. Prot., 11, 1207–1232. DOI: 10.4236/jwarp.2019.1110070.
- 26. Vaskina I., Roi I., Plyatsuk L., Vaskin R., Yakhnenko O., 2020. Study of the magnetic water treatment mechanism. J. Ecol. Eng., 21, 251–260. DOI: 10.12911/22998993/116341.
- 27. Wamser C.C., Otvos J.W., Calvin M., 1981. Magnetic field effects on photosentisitized electron transfer reactions. Lawrence Berkeley National Laboratory. LBNL Report #: LBL-12361. Retrieved from: https://escholarship.org/uc/item/8vt6s4hz.
- 28. Wang K., Bielan Z., Endo-Kimura M., Janczarek M., Zhang D., Kowalski D., Zielińska-Jurek A., Markowska-Szczupak A., Ohtani B., Kowalska E., 2021. On the mechanism of photocatalytic reactions on Cux O@TiO2 core–shell photocatalysts. J. Mater. Chem. A, 9, 10135–10145. DOI: 10.1039/D0TA12472A.
- 29. Wang K., Wei Z., Ohtani B., Kowalska E., 2018. Interparticle electron transfer in methanol dehydrogenation on platinumloaded titania particles prepared from P25. Catal. Today, 303, 327–333. DOI: 10.1016/j.cattod.2017.08.046.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92147482-b277-4927-934c-7d1a1918c2ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.