Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove that a random word of length n over a k-ary fixed alphabet contains, on expectation,Θ(√n) distinct palindromic factors. We study this number of factors, E(n, k), in detail, showing that the limit limn→∞ E(n, k)=√n does not exist for any κ ≥ 2, lim infn→∞ E(n; k)=√n =Θ(1), and lim supn→∞ E(n; k)=√n = Θ(√k). Such a complicated behaviour stems from the asymmetry between the palindromes of even and odd length. We show that a similar, but much simpler, result on the expected number of squares in random words holds. We also provide some experimental data on the number of palindromic factors in random words.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
371--384
Opis fizyczny
Bibliogr. 11 poz., tab., wykr.
Twórcy
autor
- Ural Federal University Ekaterinburg, Russia
autor
- Ural Federal University Ekaterinburg, Russia
Bibliografia
- [1] Richmond LB, Shallit J. Counting the Palstars. Electronic J. Combinatorics. 2014; 21(3) # P3.25.
- [2] Fici G, Zamboni L. On the least number of palindromes contained in an infinite word. Theoret. Comput. Sci. 2013; 481:1–8. doi: 10.1016/j.tcs.2013.02.013.
- [3] Droubay X, Justin J, Pirillo G. Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 2001; 255:539–553. doi: 10.1016/S0304-3975(99)00320-5.
- [4] Glen A, Justin J, Widmer S, Zamboni L. Palindromic richness. European J. Combinatorics. 2009; 30(2):510–531. doi: 10.1016/j.ejc.2008.04.006.
- [5] Guo C, Shallit J, Shur AM. On the combinatorics of palindromes and antipalindromes. arXiv:1503.09112 [cs.FL]; 2015.
- [6] Anisiu MC, Anisiu V, Kása Z. Total palindrome complexity of finite words. Discrete Math. 2010; 310:109–114. doi: 10.1016/j.disc.2009.08.002.
- [7] Guibas LJ, Odlyzko AM. Maximal prefix-synchronized codes. SIAM J. Applied Math. 1978; 35:401–418. Available from: http://www.jstor.org/stable/2100678.
- [8] Guibas LJ, Odlyzko AM. String overlaps, pattern matching, and nontransitive games. J. Combin. Theory. Ser. A. 1981; 30:183–208.
- [9] Groult R, Prieur E, Richomme G. Counting distinct palindromes in a word in linear time. Inform. Process. Lett. 2010; 110:908–912. doi: 10.1016/j.ipl.2010.07.018.
- [10] Kosolobov D, Rubinchik M, Shur AM. Finding distinct subpalindromes online. Proc. Prague Stringology Conference. PSC 2013, Czech Technical University in Prague; 2013. ISBN- 978-80-01-05330-0.
- [11] Lothaire M. Combinatorics onWords. vol. 17 of Encyclopedia of Mathematics and Its Applications, Addison-Wesley; 1983. ISBN- 10:0201135167, 13:9780201135169.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-920c29d1-e1cc-49f4-987e-066731b1d399