PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Life prediction and risk assessment on the aircraft cable based on thermal damage features

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aiming at the operational risk caused by melting of aircraft cable insulation layer, an aircraft cable safety analysis method based on thermal damage characteristics is proposed. Based on the mechanism of cable thermal damage, two types of damage characteristics are defined, which characterize the influence and degree of cable thermal damage. Use thermal damage influence factor to indicate that cable thermal damage accelerates cable failure, and a method of cable life prediction is proposed. Meanwhile, the proportion coefficient μ is set to evaluate the applicability of the life prediction method. The life prediction results show that the cable life prediction method proposed owes higher accuracy, and comparison results show that the proposed method MTBF1 is more applicable in different operating areas. Moreover, a dynamic risk assessment model for aircraft cable is constructed from two perspectives, and the failure probability of cable is modified by the thermal damage influence factor. The risk assessment result is consistent with the experimental, which proves the effectiveness of the model.
Rocznik
Strony
art. no. 191696
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • Nanjing University of Aeronautics and Astronautics, China
autor
  • Nanjing University of Aeronautics and Astronautics, China
autor
  • Nanjing University of Aeronautics and Astronautics, China
autor
  • Civil Aviation Management Institute of China, China
autor
  • Nanjing University of Aeronautics and Astronautics, China
  • Nanjing University of Aeronautics and Astronautics, China
Bibliografia
  • 1. Chen Y, Hui B, Cheng Y, et al. Effects of connection conditions between insulation screen and Al sheath on the buffer layer failures of high-voltage XLPE cables. Engineering failure analysis. 2021;122:105263,https://doi.org/10.1016/j.engfailanal.2021.105263.
  • 2. Liu J, Yan S, Wang S,et al. Evaluation of Electrical Tree Aging State of XLPE Cables Based on Low Frequency and High Voltage Frequency Domain Spectroscopy. Transactions of China Electrotechnical Society. 2023;38(9): 2510-2518, https://doi.org/10.19595/j.cnki.1000-6753.tces.212081.
  • 3. Andruszkiewicz J, Lorenc J, Łowczowski K, Weychan A, Zawodniak J. Energy losses’ reduction in metallic screens of mv cable power lines and busbar bridges composed of single-core cables. Eksploatacja I Niezawodnosc-Maintenance And Reliability. 2020;22:15-25,https://doi.org/10.17531/ein.2020.1.3.
  • 4. Yang Haoqi. Research on Intelligent Assessment Method of Aviation DC Arc Risk. Master’s dissertation in Nanjing University of Aeronautics and Astronautics. 2023.
  • 5. Zhang Yuemei. Research on Health Status Assessment and Remaining Life Prediction for Spacecraft Power System. Master’s dissertation in Nanjing University of Aeronautics and Astronautics, https://doi.org/10.27239/d.cnki.gnhhu.2021.000468.
  • 6. Zhang S, Zhang Y. Nonlinear mixed reliability model with non-constant shape parameter of aviation cables. Applied mathematical modelling. 2021;96:445-455,https://doi.org/10.1016/j.apm.2021.03.011.
  • 7. Zhao G, Di H, Bai H, Lin Y. A cable health assessment method based on multi-agent and matter-element extension model. Sustainable energy technologies and assessments. 2023;56:103108,https://doi.org/10.1016/j.seta.2023.103108.
  • 8. Okpokparoro S, Sriramula S. Reliability analysis of floating wind turbine dynamic cables under realistic environmental loads. Ocean engineering. 2023;278:114594,https://doi.org/ 10.1016/j.oceaneng.2023.114594.
  • 9. Bukya M, Kumar R, Gupta RK. A study on safety issues and analytical evaluation of stresses for HVDC cable in electrical vehicle. AIP Conference Proceedings. 2020;2294,https://doi.org/10.1063/5.0031351.
  • 10. Diban B, Mazzanti G. The effect of temperature and stress coefficients of electrical conductivity on the life of HVDC extruded cable insulation subjected to type test conditions. IEEE transactions on dielectrics and electrical insulation. 2020;27:1313-1321,https://doi.org/10.1109/TDEI.2020.008772.
  • 11. Yang Ping. Study on improved electrical life model of DC cable insulation materials based on performance attenuation. Master’s dissertation in Chongqing University of Technology,https://doi.org/10.27753/d.cnki.gcqgx.2021.000737.
  • 12. Liao Y, Bao S, Xie Y, et al. Breakdown failure analysis of 220 kV cable joint with large expanding rate under closing overvoltage. Engineering failure analysis. 2021;120:105086,https://doi.org/10.1016/j.engfailanal.2020.105086.
  • 13. Zhu H, Han Z, Yang J, et al. Multi-factor simulation analysis of operation characteristics of side-by-side directly buried cables. Electric power systems research. 2023;218:109143,https://doi.org/10.1016/j.epsr.2023.109143.
  • 14. Long M, Fang H, Yuege Z, et al. Research on Life Assessment Method of Spacecraft Optical Cable Based on Degradation Data. 2019 Prognostics and System Health Management Conference (PHM-Qingdao). IEEE; 2019:1-6,https://doi.org/10.1109/PHM-Qingdao46334.2019.8942891.
  • 15. Yu X, Ai T, Wang K. Application of nanogenerators in acoustics based on artificial intelligence and machine learning. APL Materials. MELVILLE: AIP Publishing; 2024;12:2-16,https://doi.org/10.1063/5.0195399.
  • 16. Zhan X, Liu Z, Yan H, et al. A novel method of health indicator construction and remaining useful life prediction based on deep learning. Eksploatacja i Niezawodnosc. 2023;25(4):171374,https://doi.org/10.17531/ein/171374.
  • 17. Santhosh TV, Gopika V, Ghosh AK, Fernandes BG. An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs. Reliability engineering & system safety. 2018;170:31-44,https://doi.org/10.1016/j.ress.2017.10.010.
  • 18. Pan Q, Zhang C, Wei X, et al. Assessment of MV XLPE cable aging state based on PSO-XGBoost algorithm. Electric power systems research. 2023;221:109427,https://doi.org/10.1016/j.epsr.2023.109427.
  • 19. Hu Y, Huang C, Zhang D, et al. Cable Life Prediction Based on BP Neural Network. 2021 International Conference on Networking Systems of AI (INSAI). IEEE; 2021:258-262,https://doi.org/10.1109/INSAI54028.2021.00055.
  • 20. Li D, Wang X, Wu J, et al. XLPE cable insulation aging based on feature detection life prediction method. Journal of Electric Power Science and Technology. 2022;37(01):168-177,https://doi.org/10.19781/j.issn.1673-9140.2022.01.020.
  • 21. Gao J, Yang D, Wang S, et al. State of health estimation of lithium-ion batteries based on Mixers-bidirectional temporal convolutional neural network. Journal of energy storage. 2023;73:109248,https://doi.org/10.1016/j.est.2023.109248.
  • 22. Liu Y, Li Q, Wang K. Revealing the degradation patterns of lithium-ion batteries from impedance spectroscopy using variational auto-encoders. Energy Storage Materials. 2024;69,https://doi.org/10.1016/j.ensm.2024.103394.
  • 23. Fang P, Sui X, Zhang A, et al. Fusion model based RUL prediction method of lithium-ion battery under working conditions. Eksploatacja i Niezawodność – Maintenance and Reliability. 2024;https://doi.org/10.17531/ein/186537.
  • 24. Jin H, Hu Y, Ge H,et al.Remaining useful life prediction for lithium-ion batteries based on an improved GWO-SVR algorithm.Chinese Journal of Engineering. 2024;46(03):514-524,https://doi.org/10.13374/j.issn2095-9389.2023.05.31.002.
  • 25. Hou Q, Cao L, Shan T, et al. Remaining useful life prediction of aviation lithium battery based on indirect health index and echo state network. Measurement & Control Technology. 2022;41(07):57-63,https://doi.org/10.19708/j.ckjs.2021.12.304.
  • 26. Qiu Senbao. Research on reliability management of a company's aviation cable. Master’s dissertation in South China University of Technology.2016.
  • 27. International Electrotechnical Commission. IEC60227-1: Polyvinyl chloride insulated cables of rated voltages up to and including 450/750V-Part 1:General requirements.2007.
  • 28. State Administration for Market Regulation (China), Standardization Administration (China). GB/T 42096: Performance requirements for aircraft fire-resisting electrical cables.2022.
  • 29. European Committee for Standardization. EN 3475-100: Aerospace series - Cables, electrical, aircraft use - Test methods - Part 100: General.2010.
  • 30. Meng Z, Wang L, Sun J, et al. Parallel arc damage modeling in aircraft system. Transactions of China Electrotechnical Society. 2015,30(22):263-268,https://doi.org/10.19595/j.cnki.1000-6753.tces.2015.22.032.
  • 31. FIDES guide 2009 Edition A. Reliability methodology for electronic systems. http://www.fides-reliability.org.
  • 32. Selech J, Rogula-Kozłowska W, Piątek P, et al. Failure and reliability analysis of heavy firefighting and rescue vehicles: a case study. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2024;26(1),http://doi.org/10.17531/ein/175505.
  • 33. Chen C, Li B, Guo J, Liu Z, Qi B, Hua C. Bearing life prediction method based on the improved FIDES reliability model. Reliability engineering & system safety. 2022;227:108746,https://doi.org/10.1016/j.ress.2022.108746.
  • 34. Miad A, Aditya S, Pavol B. Comparison of Military Handbook and the FIDES Methodology for Failure Rate Estimation of Modular Multilevel Converters. 2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). 2023:1-6, ,https://doi.org/10.1109/CPE-POWERENG58103.2023.10227449.
  • 35. Index of /data/global-summary-of-the-day/archive.https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/.
  • 36. Xiong Minlan. Research on Operational Risk of Civil Aircraft Based on Data and Cases. Master’s dissertation in Nanjing University of Aeronautics and Astronautics. 2021.
  • 37. Federal Aviation Administration. AC 25.1309-1B System Design and Analysis. 2002.
  • 38. Guo Jiayin. Research on Fire Risk Assessment and Online Monitoring System of Power Cable. Master’s dissertation in China University of Mining and Technology. 2022,https://doi.org/10.27623/d.cnki.gzkyu.2022.001149.
  • 39. Society of Automotive Engineers. SAE ARP4761A:Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment.2023.
  • 40. Society of Automotive Engineers.SAE J1739:Potential Failure Mode and Effects Analysis (FMEA) Including Design FMEA, Supplemental FMEA-MSR, and Process FMEA. 2021.
  • 41. Xu J, Ding R, Li M, et al. A new Bayesian network model for risk assessment based on cloud model, interval type-2 fuzzy sets and improved D-S evidence theory. Information sciences. 2022;618:336-355,http://doi.org/10.1016/j.ins.2022.11.011.
  • 42. Li Jinmei. Research on the cable failure characteristics and prediction method under fire conditions. Doctoral dissertation in University of Science and Technology Beijing. 2018.
  • 43. Gao Cheng, Chen Bingyin, Huang Jiaoying, et al(2020). Research on Failure Rate Prediction of MEMS Based on FIDESwith Multiple Failure Mechanisms. JOURNALS: Microelectronics,vol.20,no.05,pp.743-749,https://doi.org/10.13911/j.cnki.1004-3365.190631.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9207dec9-c8a8-4f36-9cd3-97385e08d175
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.