PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Uniqueness of meromorphic functions and their powers in set sharing

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study is to determine whether the existence of shared sets S containing both meromorphic (entire) functions and their higher derivatives, as well as powers of meromorphic functions and their differential polynomials, could result in uniqueness. The main focus is on determining the precise solutions to various differential equations. This problem is being studied in a broader context, specifically in set sharing.
Wydawca
Rocznik
Strony
157--172
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bangalore 560 056, India
  • Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bangalore 560 056, India
Bibliografia
  • [1] A. Banerjee and M. B. Ahamed, Meromorphic function sharing a small function with its differential polynomial, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 54 (2015), no. 1, 33-45.
  • [2] S. S. Bhoosnurmath, B. Chakraborty and H. M. Srivastava, A note on the value distribution of differential polynomials, Commun. Korean Math. Soc. 34 (2019), no. 4, 1145-1155.
  • [3] J. Chang, M. Fang and L. Zalcman, Entire functions that share a set with their derivatives, Arch. Math. (Basel) 89 (2007), no. 6, 561-569.
  • [4] J. Chang and L. Zalcman, Meromorphic functions that share a set with their derivatives, J. Math. Anal. Appl. 338 (2008), no. 2, 1020-1028.
  • [5] M. Fang and L. Zalcman, Normal families and uniqueness theorems for entire functions, J. Math. Anal. Appl. 280 (2003), no. 2, 273-283.
  • [6] W. K. Hayman, Meromorphic Functions, Oxford Math. Monogr., Clarendon Press, Oxford, 1964.
  • [7] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193-206.
  • [8] F. Lü, A note on meromorphic functions that share a set with their derivatives, Arch. Math. (Basel) 96 (2011), no. 4, 369-377.
  • [9] A. Z. Mokhon’ko, The Nevanlinna characteristics of certain meromorphic functions, Funct. Anal. Appl. 14 (1971), 83-87.
  • [10] E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Manuscripta Math. 29 (1979), no. 2-4, 195-206.
  • [11] L. A. Rubel and C. C. Yang, Values shared by an entire function and its derivative, in: Complex Analysis, Lecture Notes in Math. 599, Springer, Berlin (1977), 101-103.
  • [12] H. X. Yi, Uniqueness of meromorphic functions and a question of C. C. Yang, Complex Variables Theory Appl. 14 (1990), no. 1-4, 169-176.
  • [13] H.-X. Yi, Uniqueness theorems for meromorphic functions. II, Indian J. Pure Appl. Math. 28 (1997), no. 4, 509-519.
  • [14] H.-X. Yi, Uniqueness theorems for meromorphic functions whose nth derivatives share the same 1-points, Complex Variables Theory Appl. 34 (1997), no. 4, 421-436.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-920690b3-493d-45bb-90b8-c32b966f972b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.