PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimising pedestrian flow in a topological network using various pairwise speed-density models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A speed-density model can be utilised to efficiently flow pedestrians in a network. However, how each model measures and optimises the performance of the network is rarely reported. Thus, this paper analyses and optimises the flow in a topological network using various speed-density models. Each model was first used to obtain the optimal arrival rates to all individual networks. The optimal value of each network was then set as a flow constraint in a network flow model. The network flow model was solved to find the optimal arrival rates to the source networks. The optimal values were then used to measure their effects on the performance of each available network. The performance results of the model were then compared with that of other speed-density models. The analysis of the results can help decision-makers understand how arrival rates propagate through traffic and determine the level of the network throughputs.
Rocznik
Strony
53--69
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Institute of Strategic Industrial Decision-Modelling (ISIDM), School of Quantitative Sciences, University Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia
  • Institute of Strategic Industrial Decision-Modelling (ISIDM), School of Quantitative Sciences, University Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia
  • Faculty of Management and Information Technology, University Islam Sultan Azlan Shah, 33000 Kuala Kangsar, Perak, Malaysia
  • Department of Statistics, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
Bibliografia
  • [1] Bradley, S. P., Hax, A. C., and Magnanti T. L. Applied Mathematical Programming. Addison-Wesley Publishing Company, Boston, 1977.
  • [2] Cheah, J., and MacGregor Smith, J. Generalized M/G/C/C state dependent queueing models and pedestrian traffic flows. Queueing Systems 15, 1 (1994), 365–386.
  • [3] Dahiya, G., Asakura, Y., and Nakanishi, W. Analysis of the single-regime speed-density fundamental relationships for varying spatiotemporal resolution using Zen Traffic Data. Asian Transport Studies 8 (2022), 100066.
  • [4] Drake, J. S., Schofer, J. L., and May, A. D. A statistical analysis of speed density hypothesis. Highway Research Record 154 (1965), 53–87.
  • [5] Drew, D. R. Traffic Flow Theory and Control. McGraw-Hill, New York, 1968.
  • [6] Edie, L. C. Car-following and steady-state theory for noncongested traffic. Operations Research 9, 1 (1961), 66–76.
  • [7] Fruin, J. J. Pedestrian Planning and Design. Metropolitan Association of Urban Designers and Environmental Planners, New York, 1971.
  • [8] Greenberg, H. An analysis of traffic flow. Operations Research 7, 1 (1959), 79–85.
  • [9] Greenshields, B. D., Bibbins J. R., Channing W. S., Miller H. H. A study of traffic capacity. Highway Research Board Proceedings 14 (1935), 448–477.
  • [10] Hankin, B. D., and Wright, R. A. Passenger flow in subways. Operational Research Quarterly 9, 2 (1958), 81–88.
  • [11] Hillier, F. S., and Lieberman, G. J. Introduction to Operations Research. McGraw-Hill, New York, 2001.
  • [12] Jing, W.-L. Introduction to Network Traffic Flow Theory: Principles, Concepts, Models, and Methods. Elsevier, Amsterdam, 2021.
  • [13] Khalid, R., Baten, M. A., Nawawi, M. K. M., and Ishak, N. Analyzing and optimizing pedestrian flow through a topological network based on M/G/C/C and network flow approaches. Journal of Advanced Transportation 50, 1 (2016), 96–119.
  • [14] Khalid, R., Nawawi, M. K. M., Kawsar, L. A., Ghani, N. A., Kamil, A. A., and Mustafa, A. A discrete event simulation model for evaluating the performances of an M/G/C/C state dependent queuing system. PLoS ONE 8, 4 (2013), e58402.
  • [15] Khalid, R., Nawawi, M. K. M., Kawsar, L. A., Ghani, N. A., Kamil, A. A., and Mustafa, A. The evaluation of pedestrians’ behavior using M/G/C/C analytical, weighted distance and real distance simulation models. Discrete Event Dynamic Systems 26, 3 (2016), 439–476.
  • [16] Khalid, R., Nawawi, M. K. M., Kawsar, L. A., Ghani, N. A., Kamil, A. A., and Mustafa, A. Optimal routing of pedestrian flow in a complex topological network with multiple entrances and exits 51, 8 (2020), 1325–1352.
  • [17] May, A. D. Traffic Flow Fundamentals. Prentice Hall, Englewood Cliffs, NJ, 1990.
  • [18] Navin, F. P., and Wheeler, R. J. Pedestrian flow characteristics. Traffic Engineering 39 (1969), 31–36.
  • [19] Oeding, D. Traffic loads and dimensions of walkways and other pedestrian circulation facilities. Straßenbau und Straßenverkehrstechnik 22 (1963), 160–163.
  • [20] Older, S. J. Movement of pedestrians on footways in shopping streets. Traffic Engineering and Control 10, 4 (1968), 160–163.
  • [21] Pipes, L. A. Car following models and the fundamental diagram of road traffic. Transportation Research 1 (1967), 21–29.
  • [22] Predtechenskii, V. M., and Milinskii, A. I. Planning for Foot Traffic Flow in Buildings. Amerind Publishing, New Delhi, 1983.
  • [23] Render, B., Stair, R. M., Hanna, M. E., and Hale, T. S. Quantitative Analysis for Management. Pearson, London, 015.
  • [24] Smith, J. M. Evacuation Networks. In Encyclopedia of Optimization, C. A. Floudas and P. M. Pardalos, Eds., Kluwer Academic Publishers, Dordrecht, 2001, pp. 576–584.
  • [25] Smith, J. M., and Cruz, F. R. B. M/G/c/c state dependent travel time models and properties. Physica A: Statistical Mechanics and its Applications 395, (2014), 560–579.
  • [26] Stewart, J. Multivariable Calculus. Brooks/Cole Cengage Learning, Belmont, 2012.
  • [27] Sun, L., Gong, Q., Yao, L., Luo, W., and Zhang, T. A dynamic time warping algorithm based analysis of pedestrian shockwaves at bottleneck. Journal of Advanced Transportation 2018 (2018), 1269439.
  • [28] Taylor III, B. W. Introduction to Management Science. Pearson, London, 2016.
  • [29] Underwood, R. T. Speed, Volume and Density Relationships. Bureau of Highway Traffic, Yale University, Victoria 1960.
  • [30] Weiss, A., Williams, L., and Smith, J. M. Performance & optimization of M/G /c/c building evacuation networks. Journal of Mathematical Modelling and Algorithms 11, 4 (2012), 361–386.
  • [31] Winston, W. L. Operations Research. Applications and Algorithms. Cengage Learning, Boston 2004.
  • [32] Winston, W. L., and Albright, S. C. Practical Management Science. Cengage Learning, Boston, 2019.
  • [33] Yu, C., Zhang, J., Yao, D., Zhang, R., and Jin, H. Speed-density model of interrupted traffic flow based on coil data. Mobile Information Systems 2016 (2016), 7968108.
  • [34] Yuhaski Jr, S. J., and Smith, J. M. Modeling circulation systems in buildings using state dependent queueing models. Queueing Systems 4, 4 (1989), 319–338.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92012ea5-28ae-409c-a88f-76d898776d23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.