Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The surface water table level is a crucial factor for the existence of wetland habitats, and valuable from the point of view of environmental protection. In particular, surface water table in a hydrological year play an important role, affecting the seasonal changes in conditions of the development of species inhabiting a given patch of vegetation. The occurrence of floods often determines the possibility of survival of a given plant community. Information on the seasonal variability of surface waters, and above all the range of seasonal floods, is very important from the point of view of planning protection activities in National Parks in order to preserve wetland habitats. Nowadays, remote sensing data is an important source of spatial information, particularly those characterized by low cost data acquisition and processing. One such source is imagery collected from satellites, along with products freely distributed by the European Space Agency. Satellites of the Sentinel constellation provide multi-spectral optical remote sensing images recorded at visible and infrared wavelengths. Due to the short satellite revisit time of the Sentinel, the images from this satellite constitute a potential source of information for the monitoring of moisture on wetlands with a high temporal resolution. In this study, the authors aim to demonstrate the possibilities associated with the use of satellite images to monitor the range of a free surface water table in the pilot area located within the basin of the Łasica Channel, located in the Kampinos National Park (Poland). The accuracy of the results of the remote sensing transformations will be assessed using high resolution RGB images obtained with the use of unmanned aerial vehicles (UAV) and control points measurements. The maps of free water table has been acquired as an result of ensemble regressors (Random Forest, Extra Trees, Bagging). Regressors has been learned and applied for two sessions. Promising results were obtained indicating the possibility of using the proposed method on a similar scale.
Słowa kluczowe
Rocznik
Tom
Strony
23--30
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
- Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
- Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
- Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
- Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
- Breiman L., 2001, Random Forests, Machine Learning, 45 (1), 5-32, DOI: 10.1023/A:1010933404324.
- Brokvina A., Cienciala E., Surový P., Janata P., 2018, Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands, Geospatial Information Science, 21 (1), DOI: 10.1080/10095020.2017.1416994.
- Candiago S., Remondido F., De Giglio M., Dubbini M., Gattelli M., 2015, Evaluating multispectral images and vegetation indices for precision farming applications from UAV images, Remote Sensing, 7 (4), 4026-4047, DOI: 10.3390/rs70404026.
- Chormański J., Okruszko T., Ignar S., Batelaan O., Rebel K.T., Wassen M.J., 2011, Flood mapping with remote sensing and hydrochemistry: A new method to distinguish the origin of flood water during floods, Ecological Engineering, 37 (9), 1334-1349, DOI: 10.1016/j.ecoleng.2011.03.016.
- Chen R., Chu T., Landivar J., Yang C., Maeda M., 2018, Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images, Precision Agriculture, 19 (1), 161-177, DOI: 10.1007/s11119-017-9508-7.
- De Michele C., Avanzi F., Passoni D., Barzaghi R., Pinto L., Dosso P., Ghezzi A., Gianatti R., Della Vedova G., 2016, Using a fixed-wing UAS to map snow depth distribution: an evaluation at peak accumulation, The Cryosphere, 10 (2), 511-522, DOI: 10.5194/tc-10-511-2016.
- Demarchi L., Bizzi S., Piégay H., 2016, Regional hydromorphological characterization with continuous and automated remote sensing analysis on VHR imagery and low-cost resolution LiDAR data, Earth Surface Processes and Landforms, 42 (3), 531-551, DOI: 10.1002/esp.4092.
- Drusch M., Del Bello U., Carlier S., Colin O., Fernandez V., Gascon F., Hoersch B., Isola C., Laberinti P., Martimort P., Meygret A., Spoto F., Sy O., Marchese F., Bargellini P., 2012, Sentinel-2: ESA’s optical high-resolution mission for GMES operational services, Remote Sensing of Environment, 120, 25-36, DOI: 10.1016/j.rse.2011.11.026.
- Eling C., Wieland M., Hess C., Klingbeil L., Kuhlmann H., 2015, Development and evaluation of a UAV based mapping system for remote sensing and surveying applications, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 233-239, DOI: 10.5194/isprsarchives-XL-1-W4-233-2015.
- Geurts P., Ernst D., Wehenkel L., 2006, Extremely randomized trees, Machine Learning, 63 (1), 3-42, DOI: 10.1007/s10994-006-6226-1.
- Gislason P., Benediktsson J., Sveinsson J., 2006, Random Forest for land cover classification, Pattern Recognition Letters, 27 (4), 294-300, DOI: 10.1016/j.patrec.2005.08.011.
- Görn S., Dobner B., Suchanek A., Fischer K., 2013, Assessing human impact on fen biodiversity: effects of different management regimes on butterfly, grasshopper and carabid beetle assemblages, Biodiversity and Conservation, 23 (2), 309-326, DOI: 10.1007/s10531-013-0602-5.
- Gruszczyński T., Krogulec E., 2012, Wybór wariantu renaturalizacji obszarów podmokłych w Kampinoskim Parku Narodowym na podstawie badań modelowych, Biuletyn Państwowego Instytutu Geologicznego, 451, 45-52.
- Huang C., Chen Y., Wu J., Li L., Liu R., 2015, An evaluation of Suomi NPP-VIIRS data for surface water detection, Remote Sensing Letters, 6 (2), 155-164, DOI: 10.1080/2150704X.2015.1017664.
- Jaya N., Nagai M., 2017, Integrated land deformation and groundwater monitoring using Synthetic Aperture Radar (SAR) Interferometry processing, GISRUK, 116, 5 pp.
- Jones J., 2015, Efficient wetland surface detection and monitoring via Landsat: Comparison with in situ data from Everglades depth estimation network, Remote Sensing, 7 (9), 12503-12538, DOI: 10.3390/rs70912503.
- Kopeć D., Michalska-Hejduk D., Krogulec E., 2013, The relationship between vegetation and groundwater levels as an indicator of spontaneous wetland restoration, Ecological Engineering, 57, 242-251, DOI: 10.1016/j.ecoleng.2013.04.028.
- Krogulec E., Zabłocki S., 2015, Relationship between the environmental and hydrogeological elements characterizing groundwater-dependent ecosystems in central Poland, Hydrogeology Journal, 23 (7), 1587-1602, DOI 10.1007/ s10040-015-1273-y.
- Lagüela S., Diaz-Vilariño L., Roca D., Lorenzo H., 2015, Aerial thermography from low-cost UAV for the generation of thermographic digital terrain models, Opto-Electronics Review, 23 (1), 76-82, DOI: 10.1515/oere-2015-0006.
- Lipiński J., 2006, Zarys rozwoju oraz produkcyjne i środowiskowe znaczenie melioracji w świetle badań, Acta Scientiarum Polonarum. Formatio Circumiectus, 5 (1), 3-15.
- Louppe G., Geurts P., 2012, Ensembles on random patches, [in:] Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2012, Lecture Notes in Computer Science, vol. 7523, P.A. Flach, T. De Bie, N. Cristianini (eds.), Springer, Berlin, Heidelberg, 346-361.
- McFeeters S.K., 1996, The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, 17 (7), 1425-1432, DOI: 10.1080/01431169608948714.
- Pennings S.C., Grant M.-B., Bertness M.D., 2004, Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition, Journal of Ecology, 93 (1), 159-167, DOI: 10.1111/j.1365-2745.2004.00959.x.
- Pereira J., 1999, A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping, IEEE Transactions on Geoscience and Remote Sensing, 37 (1), 217-226, DOI: 10.1109/36.739156.
- Piniewski M., Gottschalk L., Krasovskaia I., Chormański J., 2012, A GIS-based model for testing effects of restoration measures in wetlands: A case study in the Kampinos National Park, Poland, Ecological Engineering, 44, 25-35.
- Rokni K., Ahmad A., Selamat A., Hazini S., 2014, Water feature extraction and change detection using multitemporal Landsat imagery, Remote Sensing, 6 (5), 4173-4189, DOI: 10.3390/rs6054173.
- Trandziuk P., 2015, Opracowanie 1 etapu analizy funkcjonowania jazów na Kanale Łasica w KPN, unpublished.
- Torresan C., Berton A., Carotenuto F., Di Gennaro S.F., Gioli B., Matese A., Miglietta F., Vagnoli C., Zaldei A., Wallace L., 2017, Forestry applications of UAVs in Europe: a review, International Journal of Remote Sensing, 38 (8-10), 2427- 2447, DOI: 10.1080/01431161.2016.1252477.
- Turner D., Lucieer A., Watson C., 2012, An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SfM) point clouds, Remote Sensing, 4 (5), 1392-1410, DOI: 10.3390/rs4051392.
- Walker K., Boulton A., Thomas M., Sheldon F., 1994, Effects of water-level changes induced by weirs on the distribution of littoral plants along the River Murray, South Australia, Australian Journal of Marine and Freshwater Research, 45 (8), 1421-1438, DOI: 10.1071/MF9941421.
- Wang S., Zhuang Q., Yu Z., 2016, Quantifying soil carbon accumulation in Alaskan terrestrial ecosystems during the last 15000 years, Biogeosciences, 13 (22), 6305-6319, DOI: 10.5194/bg-13-6305-2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91ffa1a5-b842-4884-a89a-173929663130