PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Eksploatacyjne uwarunkowania emisji zanieczyszczeń gazowych z węglowych źródeł ciepłowniczych
Języki publikacji
EN
Abstrakty
EN
This study describes the correlation between emission of gaseous pollutants to the atmosphere and the combustion parameters of a coal-fired 25 MW heating capacity water boiler with mechanical grate (boiler type WR-25) in unstable working conditions: start-up, shutdown and loads below the technical minimum. Whereas measurements were made for a specific type and size of coal-fired water boiler with mechanical grate, the measurements and calculations are applicable to WR boilers with a different heating power as well as OR type steam boilers, which have a practically identical design. In sum, there are more than 1,000 coal-fired water and steam boilers of these types in Poland. In addition, the analysis reported in this paper highlights the important role played by boilers operating in unstable conditions in terms of emission of gaseous pollutants to the atmosphere. The conclusions are relevant for other boilers fi red with gas, oil or biomass operating under conditions such as start-up, shutdown and loads below the technical minimum. This article fi lls a gap in air protection engineering practice and the literature with regard to indicators and emission standards, drawing on measurements of pollutant concentrations in the exhaust gases from unstable WR boiler working conditions. The measurements can be used to assess the emission of pollutants to the atmosphere in such boiler working conditions and their impact on air quality. The analyses presented were based on the authors’ own measurements in WR-25 boiler technical installations using portable gas analyser GASMET DX-4000, which uses the FT-IR measurement method for compounds such as SO2, NOx, HCl, HF, NH3, CH4, and CO. Concentrations of CO, NOx and SO2 in exhaust gases were determined with multiple regression with the STATISTICA statistical software and with linear regression complemented by the “smart” package in the MATLAB environment. The study provides computational models to identify pollutant concentrations in the exhaust gases in any working conditions of WR-25 boilers.
PL
Prezentowana praca badawcza opisuje korelację między emisją gazowych zanieczyszczeń powietrza do atmosfery, a parametrami spalania dla wodnego kotła rusztowego opalanego węglem typu WR-25, o mocy cieplnej 25 MW w niestabilnych warunkach pracy, takich jak: rozruch, odstawianie z ruchu i praca przy obciążenia poniżej minimum technicznego. Przedstawione analizy opierały się na własnych pomiarach autorów wykonanych dla kotłów rusztowych typu WR zasilających w ciepło miejskie systemy ciepłownicze oraz na wynikach z symulacji komputerowych wykorzystujących uzyskane dane pomiarowe. Autorzy prezentują, wskaźniki emisji zanieczyszczeń gazowych do atmosfery, w oparciu o pomiary tych emisji w niestabilnych warunkach pracy kotła typu WR, a których to wskaźników aktualnie brakuje zarówno w literaturze jak i praktyce inżynierii ochrony atmosfery. Wskaźniki te pozwolą na rzeczywiste oszacowanie wielkości emisji gazowych zanieczyszczeń do atmosfery w takich niestabilnych warunkach pracy kotła, jak również ich wpływ na jakość powietrza w otoczeniu. Prezentowana praca dostarcza modele obliczeniowe do identyfikacji obciążenia emisyjnego zanieczyszczeniami gazowymi do atmosfery w jakichkolwiek, a przede wszystkim w niestabilnych warunkach pracy kotłów typu WR-25.
Rocznik
Strony
108--119
Opis fizyczny
Bibliogr. 38 poz., fot., tab., wykr.
Twórcy
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
Bibliografia
  • 1. Andersen, A. & Lund, H. (2007). New CHP partnerships offering balancing of fluctuating renewable electricity productions. Journal of Cleaner Production 15, pp. 288-293, DOI: 10.1016/j.jclepro.2005.08.017.
  • 2. Kim, B.S., Kim, T.Y., Park, T.C. & Yeo, Y.K. (2018). Comparative study of estimation methods of NOx emission with selection of input parameters for a coal-fired boiler. Korean Journal of Chemical Engineering, 35(9), pp. 1779-1790, DOI: 10.1007/s11814-018-0087-8.
  • 3. Demirbas, A. (2006). Correlations between Carbon Dioxide Emissions and Carbon Contents of Fuels. Energy Sources Part B Economics Planning and Policy. 1(4), pp. 421-427, DOI: 10.1080/15567240500402628.
  • 4. Directive (EU) 2015/1480 of 28 August 2015 amending several annexes to Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council laying down the rules concerning reference methods, data validation and location of sampling points for the assessment of ambient air quality.
  • 5. Directive IED 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions - (integrated prevention of pollution and control).
  • 6. Directive 2015/2193 of the European Parliament and of the Council of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants.
  • 7. Environmental Protection Law Act of 27 April 2011 with further amendments.
  • 8. EuroHeat and Power. District Heating and Cooling - country profiles. 2019 https://www.euroheat.org/knowledge-hub/district-energypoland/ (8.03.2021)
  • 9. Eurostat, 2019. Coal production and consumption statistics. Published June 2019, https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Coal_production_and_consumption_statistics#Consumption_and_production_of_hard_coal (8.03.2021).
  • 10. Gustafsson, M.S., Myhren, J.A. & Dotzauer, E. (2018). Potential for district heating to lower peak electricity demand in a medium-size municipality in Sweden. J. Clean. Prod. 186, pp. 1-9, DOI: 10.1016/j.jclepro.2018.03.038.
  • 11. Hast, A., Syri, S., Lekavicius, V. & Galinis, A. (2018). District heating in cities as a part of low-carbon energy system. Energy, 152, pp. 627-639, DOI: https://doi.org/10.1016/j.energy.2018.03.156.
  • 12. Hunt, B.R., Lipsman, R.L. & Rosenberg, J.M. (2002). Guide to MATLAB: For Beginners and Experienced Users. Cambridge University Press. West Nyack, NY, USA. 04/2002.
  • 13. Holnicki, P., Kaluszko, A., Nahorski, Z., Stankiewicz, K. & Trapp, W. (2017). Air quality modeling for Warsaw agglomeration. Archives of Environmental Protection. 43(1), pp. 48-64, DOI: 10.1515/aep-2017-0005.
  • 14. Kruitwagen, L., Collins, S. & Caldecott, B. (2018). Coal-fired Power Stations. Coal in the 21st Century: Energy Needs, Chemicals and Environmental Controls. (45), pp. 58-99, DOI: 10.1039/9781788010115-00058.
  • 15. Kukuła, K. (1998). Elements of statistics in tasks. Scientific Publishers PWN Warsaw.
  • 16. Lin, B. & Lin, J. (2017). Evaluating energy conservation in China’s heating industry. J. Clean. Prod. 142, pp. 501-512, DOI: 10.1016/j.jclepro.2016.06.195.
  • 17. Liu, J., Shi, J., Fu, Z., Zhang, J., Li, Y. & Ji, H. (2017). Optimization study on combustion in a 1000-MW ultra-supercritical double-tangential-circle boiler. Advanced in Mechanical Engineering, 9(11), pp. 1-12, DOI: 10.1177/1687814017730743.
  • 18. Lund, R.L., Ilic, D.D. & Trygg, L. (2016). Socioeconomic potential for introducing large-scale heat pumps in district heating in Denmark. J. Clean. Prod. 139, pp. 219-229, DOI: 10.1016/j.jclepro.2016.07.135.
  • 19. Ma, S. (2010). Simulation on SO2 and NOx Emission from Coal-Fired Power Plants in North-Eastern North America. Energy and Power Engineering, 2 (3), pp. 190-195, DOI: 10.4236/epe.2010.23028.
  • 20. Marousek, J., Haskova, S., Zeman, R., Vachal, J. & Vanickova, R. (2014). Processing of residues from biogas plants for Energy purposes. Clean Technologies and Environmental Policy, 17, pp. 797-801, DOI: 10.1007/s10098-014-0866-9.
  • 21. Maurice, B., Frischknecht, R., Coelho-Schwirtz, V. & Hungerbuhler, K. (2000). Uncertainty analysis in life cycle inventory. Application to the production of electricity with French coal power plants. Journal of Cleaner Production 8, pp. 95-108, DOI: 10.1016/S0959-6526(99)00324-8.
  • 22. Mazhar, A.R., Liu, S. & Shukla, A. (2018). A state of art review on the district heating systems. Renewable and Sustainable Energy Reviews, 96, pp. 420-439, DOI: 10.1016/j.rser.2018.08.005
  • 23. Miller, B.G. & Tillman, D.A. (2008). Combustion Engineering Issues for Solid Fuels Systems. Academic Press.
  • 24. Montanari, R. (2004). Environmental efficiency analysis for enel thermo-power plants. Journal of Cleaner Production, 12(4), pp. 403-414, DOI: 10.1016/S0959-6526(03)00015-5.
  • 25. PN-ISO 10396:2001 Stationary source emissions - sampling for the automated determination of gas concentrations. Polish Committee for Standardization.
  • 26. PN-EN 14181:2015-02 Stationary source emissions – Quality assurance of automatic measurement systems. Polish Committee for Standardization.
  • 27. Popiołkiewicz, R. (2006). The problem of efficiency of boilers operated in the summer. District Heating, Heating, Ventilation, 37 (5). (in Polish)
  • 28. Pronobis, M. (2002). Modernization of power boilers, Warsaw Scientific and Technical Publishers, Warsaw. (in Polish)
  • 29. Regulation of the Minister of the Climate of 24 September 2020 on emission standards for some types of installations, fuel combustion sources and waste incineration or co-incineration devices.
  • 30. Różycka-Wrońska, E., Wojdyga, K. & Chorzelski, M. (2014). Emission of pollutants in exhaust gases from Polish district heating sources. Journal of Cleaner Production, 75, pp. 157-165, DOI: 10.1016/j.jclepro.2014.03.069
  • 31. Różycka-Wrońska, E. (2016). Operational conditions for the emission of gaseous air pollutants from coal-fired heating sources, Dissertation, Printing House of Warsaw University of Technology Faculty of Building Services, Hydro and Environmental Engineering
  • 32. Statistics Poland 2020, GUS. Fuel and energy economy in 2018 and 2019. Published 27.11.2020, https://stat.gov.pl/obszarytematyczne/srodowisko-energia/energia/gospodarka-paliwowoenergetyczna-w-latach-2018-i-2019,4,15.html (08.03.2021).
  • 33. Wang, N., Chen, X. & Wu, G. (2019). Public Private Partnerships, a Value for Money Solution for Clean Coal District Heating Operations. Sustainability, 11, 2386, DOI: 10.3390/su11082386.
  • 34. Wilczyński, M. (2013). Twilight of hard coal in Poland, Foundation Institute for Sustainable Development, Warsaw. (in Polish)
  • 35. Wilk, Z. & Bocheńska, T. (2003). Hydrogeology of Polish mineral deposits and mining water problems. Volume II, AGH Publisher, Cracow. (in Polish)
  • 36. Wojdyga, K. (2014). Predicting heat demand for a district heating systems. International Journal of Energy and Power Engineering, 3(5), pp. 237-244, DOI: 10.11648/j.ijepe.20140305.13
  • 37. Yang, J. & Urpelainen, J. (2019). The future of India’s coal-fired power generation capacity. Journal of Cleaner Production, 226, pp. 904-912. DOI: 10.1016/j.jclepro.2019.04.074.
  • 38. Wasielewski, R., Wojtaszek, M. & Plis, A. (2020). Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler. Archives of Environmental Protection, 46 (2), pp. 58-67, DOI: 10.24425/aep.2020.133475.25.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91fbb008-095a-4d8e-a0db-003ebc6b5860
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.