PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the Productivity and Economic Feasibility for Bioenergy Production in a Mediterranean Oak Coppice

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibility of further exploiting the national bioenergy supply chain in Italy is hindered by a lack of economically sustainable mechanization. Large enterprises can rely on brand-new and advanced machinery to improve productivity and maximize revenue. On the other hand, small enterprises often resort to custom-built machinery to accomplish the same tasks. The performance of an excavator equipped with forest shears was used to model its productivity and economic feasibility in an oak coppice in central Italy. The oak coppice harvesting operations required 29%, 19%, 22%, 20% and 10% of total time respectively for clearing, moving, felling, bunching and delay. The linear model highlighted a strong influence of diameter at breast height (DBH) on the total productivity, with a p value lower than 0.001 and an adjusted R2 of 0.64. Felling and bunching operation costs ranged from 10.89 to 31.45 EUR t-1 , the latter value corresponding to a DBH of 9 cm. Hence, our findings indicate the minimum stand requirements necessary to ensure the economic sustainability of excavator-based harvesting in these specific conditions.
Rocznik
Strony
Art. no. 192178
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr.
Twórcy
  • Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria, (CREA), Italy
  • Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria, (CREA), Italy
  • Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria, (CREA), Italy
  • Institute of Dendrology, Polish Academy of Science, Poland
  • Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Italy
Bibliografia
  • Ackerman, P., Belbo, H., Eliasson, L., de Jong, A., Lazdins, A., & Lyons, J. (2014). The COST model for calculation of forest operations costs. International Journal of Forest Engineering, 25(1), 75–81. doi: 10.1080/14942119.2014.903711
  • Apǎfǎian, A. I., Proto, A. R., & Borz, S. A. (2017). Performance of a mid-sized harvester-forwarder system in integrated harvesting of sawmill, pulp-wood and firewood. Annals of Forest Research, 60(2), 227–241. doi: 10.15287/afr.2017.909
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Us-ing lme4. Journal of Statistical Software, 67(1). doi: 10.18637/jss.v067.i01
  • Bianchi, M., & La Marca O. (1984). I cedui di cerro della provincia di Viterbo. Ricerche dendro-metriche ed alsometriche in relazione ad una ipotesi di matricinatura intensiva. Istituto Di Assestamento Forestale Dell’Università Di Firenze, 1984, Fascicolo X: 41–70.
  • Borz, S. A., Marcu, M. V., & Cataldo, M. F. (2021). Evaluation of an HSM 208F 14tone HVT-R2 Forwarder Prototype under Conditions of Steep-Terrain Low-Access Forests. Croatian Journal of Forest Engineering, 42(2), 185–200. doi: 10.5552/crojfe.2021.775
  • Bustos-Letelier, O., Mena, C., Santelices-Moya, R., & Cabrera-Ariza, A. (2022). The Influence of Harvesting Systems on Productivity, Costs, and Soil Compaction in Small-Scale Forestry. Small-Scale Forestry, 0123456789. doi: 10.1007/s11842-022-09522-y
  • Camponi, L., Cardelli, V., Cocco, S., Serrani, D., Salvucci, A., Cutini, A., Agnelli, A., Fabbio, G., Bertini, G., Roggero, P. P., & Corti, G. (2022). Effect of coppice conversion into high forest on soil organic C and nutrients stock in a Turkey oak (Quercus cerris L.) forest in Italy. Journal of Envi-ronmental Management, 312. doi: 10.1016/j.jen-vman.2022.114935
  • Cataldo, M. F., Proto, A.R., & Zimbalatti, G. (2020). Evaluation of different wood harvesting systems in typical Mediterranean small-scale forests: a Southern Italian case study. Annals of silvicultural research, 45, 1–11. doi: 10.12899/asr-1883
  • Çiçekler, M., Tutus, A., & Üzüm, V. (2023). The Use of Eucalyptus Grandis Bark and Root as Raw Ma-terial in Pulp and Paper Production. Drewno, 66(211), 00002. doi: 10.12841/wood.1644-3985.425.02
  • Del Giudice, A., Scarfone, A., Paris, E., Gallucci, F., & Santangelo, E. (2022). Harvesting Wood Residues for Energy Production from an Oak Coppice in Central Italy. Energies, 15(24). doi: 10.3390/en15249444
  • Di Marzio, N. (2020). An overview of forest cover and management in Italy. Nova Mehanizacija Sumarstva, 41(1), 63–71. doi: 10.5552/nms.2020.7
  • EU. (2014). A 2030 framework for climate and energy policies European. European Parliament resolution of 5 February 2014 on a 2030 framework for climate and energy policies (2013/2135(INI)). Official Journal of the European Union. 24.3.2017, C 93/79(February), 79–102.
  • European Commission. (2012). Indirect Land Use Change (ILUC) What are biofuels? Available online at https://ec.europa.eu/commission/ presscorner/detail/en/MEMO_12_787.
  • European Parliament. (2015). Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewables. Official Journal of The European Union, L239/1, 20–30. Retrieved from https://eur-lex.eu-ropa.eu/legal-content/EN/TXT/PDF/?uri= CELEX:32015L1513&from=EN
  • Gülci, N., Yüksel, K., Gulci, S., Serin, H., Bilici, E., & Akay, A. (2021). Analysis of a feller-buncher productivity: a case study of whole-tree harvesting from Marmara region, Turkey. Annals of Forest Research. 64. 99–110. 10.15287/afr.2020.2033.
  • Haavikko, H., Kärhä, K., Poikela, A., Korvenranta, M., & Palander, T. (2022). Fuel Consumption, Greenhouse Gas Emissions, and Energy Efficiency of Wood-Harvesting Operations: A Case Study of Stora Enso in Finland. Croatian Journal of Forest Engineering, 43(1), 79–97. doi: 10.5552/crojfe.2022.1101
  • Hagenbo, A., Antón-Fernández, C., Bright, R.M., Rasse, D., & Astrup, R. (2022). Climate change mitigation potential of biochar from forestry residues under boreal condition. Science of The Total Environment, 807, 151044. doi: 10.1016/j.sci-totenv.2021.151044
  • Holzleitner, F., Kanzian, C., & Höller, N. (2013). Monitoring the chipping and transportation of wood fuels with a fleet management system. Silva Fennica, 47(1). doi: 10.14214/sf.899
  • ISTAT. (2014). Energy consumption of families Year 2013. Retrieved from http:// www.istat.it/it/files/ 2014/12/StatReport_Consu mi_energetici.pdf
  • Janiszewska-Latterini, D., & Pizzi, A. (2023). Application of Liquefied Wood Products for Parti-cleboard Manufacturing: a Meta-analysis Review. Current Forestry Reports, 9(4), 291–300. doi: 10.1007/s40725-023-00192-3
  • Laitila, J., & Väätäinen, K. (2022). The productivity and cost of harvesting whole trees from early thinnings with a felling head designed for continuous cutting and accumulation. International Journal of Forest Engineering, 34(1), 76–89. https://doi.org/10.1080/14942119.2022.2094192
  • Latterini, F., Dyderski, M. K., Horodecki, P., Picchio, R., Venanzi, R., Lapin, K., & Jagodziński, A. M. (2023). The Effects of Forest Operations and Silvicultural Treatments on Litter Decomposition Rate: a Meta-analysis. Current Forestry Reports, 9(4), 276–290. doi: 10.1007/s40725-023-00190-5
  • Latterini, F., Dyderski, M. K., Horodecki, P., Rawlik, M., Stefanoni, W., Högbom, L., Venanzi, R., Picchio, R., & Jagodziński, A.M. (2024). A Meta‐analysis of the effects of ground‐based extraction technologies on fine roots in forest soils. Land Degradation & Development, 35(1), 9–21. doi: 10.1002/ldr.4902
  • Latterini, F., Mederski, P. S., Jaeger, D., Venanzi, R., Tavankar, F., & Picchio, R. (2023). The Influ-ence of Various Silvicultural Treatments and Forest Operations on Tree Species Biodiversity. Current Forestry Reports, 9(2), 59–71. doi: https://doi.org/10.1007/s40725-023-00179-0
  • Latterini, F., Stefanoni, W., Alfano, V., Palmieri, N., Mattei, P., & Pari, L. (2022). Assessment of Working Performance and Costs of Two Small-Scale Harvesting Systems for Medium Rotation Poplar Plantations. Forests, 13, 569. doi: 10.3390/f13040569
  • Latterini, F., Stefanoni, W., Venanzi, R., Tocci, D., & Picchio, R. (2022). GIS-AHP Approach in Forest Logging Planning to Apply Sustainable Forest Operations. Forests, 13(3), 1–19. doi: 10.3390/f13030484
  • Latterini, F., Venanzi, R., Picchio, R., & Jago-dziński, A.M. (2023). Short-term physicochemical and biological impacts on soil after forest logging in Mediterranean broadleaf forests: 15 years of field studies summarized by a data synthesis under the meta-analytic framework. Forestry, 96(4), 547–560. doi: 10.1093/ forestry/cpac060
  • LeDoux, C. B. (2010). Mechanized systems for har-vesting eastern hardwoods. U.S. Department of Agriculture, Forest Service, Northern Research Station. doi: 10.2737/nrs-gtr-69
  • Lindegaard, K. N., Adams, P. W. R., Holley, M., Lamley, A., Henriksson, A., Larsson, S., von Engelbrechten, H. G., Esteban Lopez, G., & Pisarek, M. (2016). Short rotation plantations policy history in Europe: Lessons from the past and recommendations for the future. Food and Energy Security, 5(3), 125–152. doi: 10.1002/fes3.86
  • Louis, L. T., Kizha, A. R., Daigneault, A., Han, H.-S., & Weiskittel, A. (2022). Factors Affecting Operational Cost and Productivity of Ground-Based Timber Harvesting Machines: a Meta-analysis. Current Forestry Reports, 8(1), 38–54. doi: 10.1007/s40725-021-00156-5
  • Lüdecke, D. (2018). ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. Journal of Open Source Software, 3(26), 772. doi: 10.21105/joss.00772
  • Łukawski, D., Hochmańska-Kaniewska, P., Janiszewska, D., Wróblewski, G., Patmore, J., & Lekawa-Raus, A. (2022). Enriching WPCs and NFPCs with Carbon Nanotubes and Graphene. Polymers, 14(4), 745. doi: 10.3390/polym14040745
  • Mairota, P., Manetti, M. C., Amorini, E., Pelleri, F., Terradura, M., Frattegiani, M., Savini, P., Grohmann, F., Mori, P., Terzuolo, P. G., & Piussi, P. (2016). Opportunities for coppice management at the landscape level: The Italian experience. In IForest (Vol. 9, Issue 5, pp. 775–782). SISEF – Italian Society of Silviculture and Forest Ecology. doi: 10.3832/ifor1865-009
  • Manetti, M. C., Becagli, C., Bertini, G., Cantiani, P., Marchi, M., Pelleri, F., Sansone, D., & Fabbio, G. (2020). The conversion into high forest of Turkey oak coppice stands: methods, silviculture and per-spectives. IForest – Biogeosciences and Forestry, 13(4), 309–317. doi: 10.3832/ifor3483-013
  • Marchi, E., Chung, W., Visser, R., Abbas, D., Nord-fjell, T., Mederski, P. S., McEwan, A., Brink, M., & Laschi, A. (2018). Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. In Science of the Total Environment (Vol. 634, pp. 1385–1397). Elsevier B.V. doi: 10.1016/j.scitotenv.2018.04.084
  • Masiero, M., Andrighetto, N., & Pettenella, D. (2013). Linee-guida per la valutazione sistematica della filiera corta delle biomasse legnose a fini energetici. Agriregionieuropa Anno 9 N°33, Giu 2013 p. 74. Retrieved from https://agriregionieuropa.univpm.it/ it/content/article/31/33/linee-guida-la-valutazione-sistematica-della-filiera-corta-delle-biomasse
  • Michalski, K., Wieruszewski, M., Starosta-Grala, M., & Adamowicz, K. (2023). Classification of Financial Risks in Polish Modern Forestry. Drewno. Prace Naukowe, Doniesienia, Komunikaty = Wood. Research Papers, Reports, Announcements, 66(212). doi: 10.53502/wood-177426
  • Miyajima, R. H., Fenner, P. T., Batistela, G. C., & Simões, D. (2021). Effect of Feller-Buncher Model, Slope Class and Cutting Area on the Productivity and Costs of Whole Tree Harvesting in Brazilian Eucalyptus Stands. Forests, 12(8). doi: 10.3390/f12081092
  • Muhammad, A., Acuna, M., & Brown, M. (2013). Self-Levelling Feller-Buncher Productivity Based On Lidar-Derived Slope. Croatian Journal of Forest Engineering, 34.
  • Müller-Kroehling, S., Hohmann, G., Helbig, C., Liesebach, M., Lübke-Al Hussein, M., Al Hus-sein, I. A., Burmeister, J., Jantsch, M. C., Zeh-lius-Eckert, W., & Müller, M. (2020). Biodiversity functions of short rotation coppice stands – results of a meta study on ground beetles (Coleoptera: Carabidae). Biomass and Bioenergy, 132(December 2019), 105416. doi: 10.1016/j.biom-bioe.2019.105416
  • Nakagawa, M., Hamatsu, J., Saitou, T., & Ishida, H. (2007). Effect of Tree Size on Productivity and Time Required for Work Elements in Selective Thinning by a Harvester. International Journal of Forest Engineering, 18(2), 24–28. doi: 10.1080/14942119.2007.10702547
  • Opia, A. C., Hamid, M. K. B. A., Syahrullail, S., Rahim, A. B. A., & Johnson, C. A. N. (2021). Bi-omass as a potential source of sustainable fuel, chemical and tribological materials – Overview. Materials Today: Proceedings, 39, 922–928. doi: 10.1016/j.matpr.2020.04.045
  • Palander, T., Bergroth, J., & Kärhä, K. (2012). Excavator technology for increasing the efficiency of energy wood and pulp wood harvesting. Biomass and Bioenergy, 40, 120–126. doi: 10.1016/j.biom-bioe.2012.02.010
  • Pędzik, M., Tomczak, K., Janiszewska-Latterini, D., Tomczak, A., & Rogoziński, T. (2022). Management of Forest Residues as a Raw Material for the Production of Particleboards. Forests, 13(11), 1933. doi: 10.3390/f13111933
  • Picchio, R., Latterini, F., Mederski, P. S., Tocci, D., Venanzi, R., Stefanoni, W., & Pari, L. (2020). Applications of GIS-Based Software to Improve the Sustainability of a Forwarding Operation in Central Italy. Sustainability, 12(14), 5716. doi: 10.3390/su12145716
  • Picchio, R., Pignatti, G., Marchi, E., Latterini, F., Benanchi, M., Foderi, C., Venanzi, R., & Verani, S. (2018). The application of two approaches using GIS technology implementation in forest Road network planning in an Italian mountain setting. Forests, 9(5). doi: 10.3390/f9050277
  • Picchio, R., Proto, A. R., Civitarese, V., Di Marzio, N., & Latterini, F. (2019). Recent Contributions of Some Fields of the Electronics in Development of Forest Operations Technologies. Electronics, 8(12), 1465.
  • Proto, A. R., Bacenetti, J., Macrì, G., & Zimbalatti, G. (2017). Roundwood and bioenergy production from forestry: Environmental impact assessment considering different logging systems. Journal of Cleaner Production, 165, 1485–1498. doi: 10.1016/j.jclepro.2017.07.227
  • R Development Core Team. (2023). R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, Vienna Austria. Available online: http://www.r-project.org/ (accessed on 6th October 2023).
  • Schweier, J., Spinelli, R., Magagnotti, N., & Becker, G. (2015). Mechanized coppice harvesting with new small-scale feller-bunchers: Results from harvesting trials with newly manufactured felling heads in Italy. Biomass and Bioenergy, 72, 85–94. doi: 10.1016/j.biombioe.2014.11.013
  • Sperandio, G., Acampora, A., Del Giudice, A., & Civitarese, V. (2021). Models for the Evaluation of Productivity and Costs of Mechanized Felling on Poplar Short Rotation Coppice in Italy. Forests, 12(7), 954. doi: 10.3390/f12070954
  • Spinelli, R., Cacot, E., Mihelic, M., Nestorovski, L., Mederski, P., & Tolosana, E. (2016). Techniques and productivity of coppice harvesting operations in Europe: a meta-analysis of available data. Annals of Forest Science, 73(4), 1125–1139. doi: 10.1007/s13595-016-0578-x
  • Spinelli, R., Lombardini, C., Marchi, E., & Aminti, G. (2019). A low-investment technology for the simplified processing of energy wood from cop-pice forests. European Journal of Forest Research, 138(1), 31–41. doi: 10.1007/s10342-018-1150-z
  • Spinelli, R., Magagnotti, N., & Lombardini, C. (2020). Low-Investment Fully Mechanized Har-vesting of Short-Rotation Poplar (populus spp.) Plantations. Forests, 11(5), 502. doi: 10.3390/f11050502
  • Spinelli, R., Magagnotti, N., Lombardini, C., & Mihelič, M. (2021). A Low-Investment Option for the Integrated Semi-mechanized Harvesting of Small-Scale, Short-Rotation Poplar Plantations. Small-Scale Forestry, 20(1), 59–72. doi: 10.1007/s11842-020-09456-3
  • Spinelli, R., Magagnotti, N., & Nati, C. (2010). Benchmarking the impact of traditional small-scale logging systems used in Mediterranean forestry. Forest Ecology and Management, 260(11), 1997–2001. doi: 10.1016/j.foreco.2010.08.048
  • Spinelli, R., Magagnotti, N., & Schweier, J. (2017a). Trends and Perspectives in Coppice harvesting. In Croat. J. For. Eng. (Vol. 38, Issue 2).
  • Spinelli, R., Magagnotti, N., & Schweier, J. (2017b). Trends and perspectives in coppice harvesting. Croatian Journal of Forest Engineering, 38(2), 219–230.
  • Spinelli R., Magagnotti N., & Tuomasjukka D., (2021). Rationalization of coppice management in Mediterranean Europe: the sustainability ef-fects of changing product strategy and technology level, International Journal of Forest Engineering, 32:sup1, 53-62, doi: 10.1080/ 14942119.2021.1913710
  • Tolosana, E., Laina, R., Spinelli, R., Aminti, G., & López-Vicens, I. (2023). Operational and En-vironmental Comparison of Two Felling and Piling Alternatives for Whole Tree Harvesting in Quercus Coppices for Bioenergy Use. Croatian Journal of Forest Engineering, 44(1), 45–56. doi: 10.5552/crojfe.2023.1522
  • Tolosana, E., Spinelli, R., Aminti, G., Laina, R., & López-Vicens, I. (2018). Productivity, effi-ciency and environmental effects of whole-tree harvesting in Spanish coppice stands using a drive-to-tree disc saw Feller-Buncher. Croatian Journal of Forest Engineering, 39(2), 163–172.
  • Tsioras, P., Żak, J., Karaszewski, Z. (2022). RFID implementations in the wood supply chains: state of the art and the way to the future. Drewno. 65. 10.12841/wood.1644-3985.420.07.
  • United Nations. Economic Commission for Europe & Food and Agriculture Organization of the United Nations. (2000). Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand (industrialized temperate/bo-real countries) : UN-ECE/FAO contribution to the Global Forest Resources Assessment 2000. United Nations.
  • Unrau, A., Becker, G., Spinelli, R., Lazdina, D., Magagnotti, N., Nicolescu, V.N., Buckley, P., Bartlett, D., & Kofman, P.D. (Eds.) (2018). Coppice Forests in Europe. Freiburg i. Br., Germany: Albert Ludwig University of Freiburg.
  • Vanbeveren, S. P. P., & Ceulemans, R. (2019). Biodiversity in short-rotation coppice. Renewable and Sustainable Energy Reviews, 111(May), 34–43. doi: 10.1016/j.rser.2019.05.012
  • Vanbeveren, S. P. P., Spinelli, R., Eisenbies, M., Schweier, J., Mola-Yudego, B., Magagnotti, N., Acuna, M., Dimitriou, I., & Ceulemans, R. (2017). Mechanised harvesting of short-rotation coppices. Renewable and Sustainable Energy Reviews, 76(March), 90–104. doi: 10.1016/j.rser.2017.02.059
  • Visser, R., & Spinelli, R. (2012). Determining the shape of the productivity function for mechanized felling and felling-processing. Journal of Forest Research, 17(5), 397–402. doi: 10.1007/s10310-011-0313-2
  • Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package ‘corrplot.’ Statistician, 56(316), e24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91f75347-d184-4837-a4c5-26a30d3dcf77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.