PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Image compression and encryption algorithm based on advanced encryption standard and hyper-chaotic system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An image compression and encryption algorithm by combining the advanced encryption standard (AES) with the hyper-chaotic system is designed, in which Arnold map is employed to eliminate part of the block effect in the image compression process. The original image is compressed with the assistance of a discrete cosine transform and then its transform coefficients are encrypted with the AES algorithm. Besides, the hyper-chaotic system is adopted to introduce the nonlinear processfor image encryption. Numerical simulations and theoretical analyses demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.
Czasopismo
Rocznik
Strony
545--558
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • School of Computer Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, China
  • Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
autor
  • Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
autor
  • Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
Bibliografia
  • [1] MATTHEWS R., On the derivation of a “Chaotic” encryption algorithm, Cryptologia 13(1), 1989, pp. 29–41, DOI:10.1080/0161-118991863745.
  • [2] FRIDRICH J., Symmetric ciphers based on two-dimensional chaotic maps, International Journal of Bifurcation and Chaos 8(6), 1998, pp. 1259–1284, DOI:10.1142/S021812749800098X.
  • [3] GUANRONG CHEN, YAOBIN MAO, CHUI C.K., A symmetric image encryption scheme based on 3D chaotic cat maps, Chaos, Solitons and Fractals 21(3), 2004, pp. 749–761, DOI:10.1016/j.chaos.2003.12.022.
  • [4] KANSO A., GHEBLEH M., A novel image encryption algorithm based on a 3D chaotic map, Communications in Nonlinear Science and Numerical Simulation 17(7), 2012, pp. 2943–2959, DOI:10.1016/j.cnsns.2011.11.030.
  • [5] XIAOLING HUANG, GUODONG YE, An efficient self-adaptive model for chaotic image encryption algorithm, Communications in Nonlinear Science and Numerical Simulation 19(12), 2014, pp. 4094–4104,DOI:10.1016/j.cnsns.2014.04.012.
  • [6] JUN-XIN CHEN, ZHI-LIANG ZHU, CHONG FU, HAI YU, Optical image encryption scheme using 3-D chaotic map based joint image scrambling and random encoding in gyrator domains, Optics Communications 341, 2015, pp. 263–270, DOI:10.1016/j.optcom.2014.12.045.
  • [7] TIEGANG GAO, ZENGQIANG CHEN, A new image encryption algorithm based on hyper-chaos, Physics Letters A 372(4), 2008, pp. 394–400, DOI:10.1016/j.physleta.2007.07.040.
  • [8] CONGXU ZHU, A novel image encryption scheme based on improved hyperchaotic sequences, Optics Communications 285(1), 2012, pp. 29–37, DOI:10.1016/j.optcom.2011.08.079.
  • [9] GUODONG YE, KWOK-WO WONG, An image encryption scheme based on time-delay and hyperchaotic system, Nonlinear Dynamics 71(1–2), 2013, pp. 259–267, DOI:10.1007/s11071-012-0658-x.
  • [10] XIAOLING HUANG, GUODONG YE, An image encryption algorithm based on hyper-chaos and DNA sequence, Multimedia Tools and Applications 72(1), 2014, pp. 57–70, DOI:10.1007/s11042-012-1331-6.
  • [11] JIAN ZHANG, An image encryption scheme based on cat map and hyperchaotic Lorenz system, IEEE International Conference on Computational Intelligence and Communication Technology, 2015, pp. 78–82, DOI:10.1109/CICT.2015.134.
  • [12] JIAN ZHANG, DEZHI HOU, HONGE REN, Image encryption algorithm based on dynamic DNA codingand Chen’s hyperchaotic system, Mathematical Problems in Engineering, Vol. 2016, 2016, articleID 6408741, DOI:10.1155/2016/6408741.
  • [13] XIANGJUN WU, DAWEI WANG, KURTHS J., HAIBIN KAN, A novel lossless color image encryption scheme using 2D DWT and 6D hyperchaotic system, Information Sciences 349–350, 2016, pp. 137–153,DOI:10.1016/j.ins.2016.02.041.
  • [14] NANRUN ZHOU, SHUMIN PAN, SHAN CHENG, ZHIHONG ZHOU, Image compression–encryption scheme based on hyper-chaotic system and 2D compressive sensing, Optics and Laser Technology 82, 2016,pp. 121–133, DOI:10.1016/j.optlastec.2016.02.018.
  • [15] XIULI CHAI, ZHIHUA GAN, KANG YANG, YIRAN CHEN, XIANXING LIU, An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA sequence operations, Signal Processing: Image Communication 52, 2017, pp. 6–19, DOI:10.1016/j.image.2016.12.007.
  • [16] YANG LIU, XIAOJUN TONG, JING MA, Image encryption algorithm based on hyper-chaotic system and dynamic S-box, Multimedia Tools and Applications 75(13), 2016, pp. 7739–7759, DOI:10.1007/s11042-015-2691-5.
  • [17] XUANPING ZHANG, WEIGUO NIE, YOULING MA, QINQIN TIAN, Cryptanalysis and improvement of an image encryption algorithm based on hyper-chaotic system and dynamic S-box, Multimedia Tools and Applications 76(14), 2017, pp. 15641–15659, DOI:10.1007/s11042-016-3861-9.
  • [18] KUN ZHAN, DONG WEI, JUNHUI SHI, JUN YU, Cross-utilizing hyperchaotic and DNA sequences for image encryption, Journal of Electronic Imaging 26(1), 2017, article ID 013021, DOI:10.1117/1.JEI.26.1.013021.
  • [19] XINGYUAN WANG, SIWEI WANG, YINGQIAN ZHANG, CHAO LUO, A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems, Optics and Lasers in Engineering 103, 2018, pp. 1–8, DOI:10.1016/j.optlaseng.2017.11.009.
  • [20] XIAOWEI LI, YING WANG, QIONG-HUA WANG, YANG LIU, XIN ZHOU, Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm, Optics and Lasers in Engineering 112, 2019, pp. 162–169, DOI:10.1016/j.optlaseng.2018.09.015.
  • [21] TAUBMAN D., High performance scalable image compression with EBCOT, IEEE Transactions on Image Processing 9(7), 2000, pp. 1158–1170, DOI:10.1109/83.847830.
  • [22] MANICCAM S.S., BOURBAKIS N.G., Lossless image compression and encryption using SCAN, Pattern Recognition 34(6), 2001, pp. 1229–1245, DOI:10.1016/S0031-3203(00)00062-5.
  • [23] ALFALOU A., BROSSEAU C., Optical image compression and encryption methods, Advances in Opticsand Photonics 1(3), 2009, pp. 589–636, DOI:10.1364/AOP.1.000589.
  • [24] SAPNA SASIDHARAN, JITHIN R., Selective image encryption using DCT with stream cipher, International Journal of Computer Science and Information Security 8(4), 2010, pp. 268–274.
  • [25] MIRZAEI O., YAGHOOBI M., IRANI H., A new image encryption method: parallel sub-image encryption with hyper chaos, Nonlinear Dynamics 67(1), 2012, pp. 557–566, DOI:10.1007/s11071-011-0006-6.
  • [26] HEGUI ZHU, CHENG ZHAO, XIANGDE ZHANG, A novel image encryption–compression scheme using hyper-chaos and Chinese remainder theorem, Signal Processing: Image Communication 28(6), 2013, pp. 670–680, DOI:10.1016/j.image.2013.02.004.
  • [27] AIDI ZHANG, NANRUN ZHOU, LIHUA GONG, Color image encryption algorithm combining compressive sensing with Arnold transform, Journal of Computers 8(11), 2013, pp. 2857–2863.
  • [28] NANRUN ZHOU, AIDI ZHANG, JIANHUA WU, DONGJU PEI, YIXIAN YANG, Novel hybrid image compression–encryption algorithm based on compressive sensing, Optik 125(18), 2014, pp. 5075–5080,DOI:10.1016/j.ijleo.2014.06.054.
  • [29] YING CHU, XIAOMAN WANG, PENG LIU, SHUCHANG LIU, ZHIQIANG HAN, Research on chaos encryption method in image DCT domain, Journal of Image and Signal Processing 3(4), 2014, pp. 105–112, DOI:10.12677/jisp.2014.34014.
  • [30] NANRUN ZHOU, JIANPING YANG, CHANGFA TAN, SHUMIN PAN, ZHIHONG ZHOU, Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform, Optics Communications 354, 2015, pp. 112–121, DOI:10.1016/j.optcom.2015.05.043.
  • [31] AWAD A.M., HASSAN R.F., SAGHEER A.M., Chaos image encryption based on DCT transforms and Henon map, International Journal of Computer Applications 127(11), 2015, pp. 1–7, DOI:10.5120/ijca2015906532.
  • [32] XIAOLING HUANG, GUODONG YE, HUAJIN CHAI, OU XIE, Compression and encryption for remote sensing image using chaotic system, Security and Communication Networks 8(18), 2015, pp. 3659–3666,DOI:10.1002/sec.1289.
  • [33] XIAO-JUN TONG, MIAO ZHANG, ZHU WANG, JING MA, A joint color image encryption and compression scheme based on hyper-chaotic system, Nonlinear Dynamics 84(4), 2016, pp. 2333–2356, DOI:10.1007/s11071-016-2648-x.
  • [34] MIAO ZHANG, XIAOJUN TONG, Joint image encryption and compression scheme based on a new hyper-chaotic system and curvelet transform, Journal of Electronic Imaging 26(4), 2017, article ID 043008,DOI:10.1117/1.JEI.26.4.043008.
  • [35] JUAN DENG, SHU ZHAO, YAN WANG, LEI WANG, HONG WANG, HONG SHA, Image compression–encryption scheme combining 2D compressive sensing with discrete fractional random transform, Multimedia Tools and Applications 76(7), 2017, pp. 10097–10117, DOI:10.1007/s11042-016-3600-2.
  • [36] LIHUA GONG, CHENGZHI DENG, SHUMIN PAN, NANRUN ZHOU, Image compression–encryption algorithms by combining hyper-chaotic system with discrete fractional random transform, Optics and LaserTechnology 103, 2018, pp. 48–58, DOI:10.1016/j.optlastec.2018.01.007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91f70270-50e5-4416-9226-20c486c9846c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.