PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The fastest, simplified method of estimation of the largest Lyapunov exponent for continuous dynamical systems with time delay

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the applications of the new method of estimation of the Largest Lyapunov exponent. The method has been adapted to continuous dynamical systems with time delay. The paper presents efficiency of the new method in comparison with classical algorithms of LLE estimation. Computation times and convergence rates have been compared with the typically used method. It has been revealed in this paper that for the van der Pol oscillator, application of the new method increases the efficiency of calculations by 28% comparing to the classic one. Therefore, authors claim that the method presented in this paper is the fastest one in the assumed range of applications.
Rocznik
Strony
985--994
Opis fizyczny
Bibliogr. 47 poz., wykr.
Twórcy
autor
  • Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, Lodz, Poland
autor
  • Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, Lodz, Poland
Bibliografia
  • [1] Bennettin, G., Froeschle, C., Scheidecker, J. P.: Kolmogorov entropy of a dynamical system with increasing number of degrees of freedom, Phys. Rev., A, 19, 2454-2460, 1979.
  • [2] Benettin, G., Galgani, L., Strelcyn, J. M.: Kolmogorov entropy and numerical experiment, Phys. Rev., A, 14, 2338- 2345, 1976.
  • [3] Grassberger, P., Procaccia, I.: Characterization of strange attractors, Phys. Rev. Lett., 50, 346-349, 1983.
  • [4] Alligood, K. T., Sauer, T. D., Yorke, J. A.: Chaos an Introduction to Dynamical Systems, Springer, New York, 2000.
  • [5] Zhang, Y., Chen, D., Guo, D., Liao, B., Wang, Y.: On exponential convergence of nonlinear gradient dynamics system with application to square root finding, Nonlinear Dynamics, 79, 983-1003, 2015.
  • [6] Eckmann, J-P., Ruelle, D.: Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617-656, 1985.
  • [7] Oseledec, V. I.: A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Mosc. Math. Soc., 19, 197-231, 1968.
  • [8] Henon, M., Heiles, C.: The applicability of the third integral of the motion: some numerical results, Astron. J., 69, 77, 1964.
  • [9] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J. M.: Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part I: theory, Meccanica, 15, 9-20, 1980.
  • [10] Shimada, I., Nagashima, T.: A numerical approach to ergodic problem of dissipative dynamical systems, Prog. Theor. Phys., 61, 6, 1605-1616, 1979.
  • [11] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J. M.: Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part II: numerical application, Meccanica, 15, 21-30, 1980.
  • [12] Wolf, A.: Quantifying chaos with Lyapunov exponents. In: Holden, V. (ed.), Chaos. Manchester University Press, Manchester, 273-290, 1986.
  • [13] Takens, F.: Detecting strange attractors in turbulence, Lect. Notes Math., 898, 366, 1981.
  • [14] Wolf, A., Swift, J. B., Swinney, H. L., Vastano, J. A.: Determining Lyapunov exponents from a time series, Physica, D, 16, 285-317, 1985.
  • [15] Sano, M., Sawada, Y.: Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett., 55, 1082- 1085, 1985.
  • [16] Eckmann, J. P., Kamphorst, S. O., Ruelle, D., Ciliberto, S.: Lyapunov exponents from a time series, Phys. Rev. Lett., 34, 9, 4971-4979, 1986.
  • [17] Rosenstein, M. T., Collins, J. J., De Luca, C. J.: A practical method for calculating largest Lyapunov exponents from small data sets, Physica, D, 65, 1-2, 117-134, 1993.
  • [18] Parlitz, U.: Identification of true and spurious Lyapunov exponents from time series, Int. J. Bifurc. Chaos, 2, 1, 155-165, 1992.
  • [19] Stefanski, A.: Lyapunov exponents of the systems with noise and uctuating parameters, J. Theor. Appl. Mech., 46, 3, 665-678, 2008.
  • [20] Stefański, A.: Estimation of the largest Lyapunov exponent in systems with impacts, Chaos Solitons Fractals, 11, 15, 2443-2451, 2000.
  • [21] Stefa nski, A., D abrowski, A., Kapitaniak, T.: Evaluation of the largest Lyapunov exponent in dynamical systems with time delay, Chaos Solitons Fractals, 23, 1651-1659, 2005.
  • [22] Stefa nski, A., Kapitaniak, T.: Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization, Chaos Solitons Fractals, 15, 233-244, 2003.
  • [23] Iwaniec, J., Uhl, T., Staszewski, W.: Detection of changes in cracked aluminium plate determinism by recurrence analysis, Nonlinear Dynamics, 70, 1, 125-140, 2012.
  • [24] Rybaczuk, M., Aniszewska, D.: Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems, Nonlinear Dynamics, 54, 345-354, 2008.
  • [25] Wadduwage, D. P., Qiong Wu, C., Annakkage, U. D.: Power system transient stability analysis via the concept of Lyapunov Exponents, Electric Power Systems Research, 104, 183-192, 2013.
  • [26] Serweta, W., Okolewski, A., B la_zejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Mirror hysteresis and Lyapunov exponents of impact oscillator with symmetrical soft stops, International Journal of Mechanical Sciences, 101-102, 89-98, 2015.
  • [27] Serweta, W., Okolewski, A., Błażejczyk-Okolewska, B.: Lyapunov exponents of impact oscillators with Hertz's and Newton's contact models, International Journal of Mechanical Sciences, 89 , 194-206, 2014.
  • [28] Lamarque, C. H., Malasoma, J. M.: Analysis of nonlinear oscillations by wavelet transform: Lyapunov exponents, Nonlinear Dynamics, 9, 333-347, 1996.
  • [29] Yue, Y., Xie, J., Gao, X.: Determining Lyapunov spectrum and Lyapunov dimension based on the Poincare map in a vibro-impact system, Nonlinear Dynamics, 69, 743-753, 2012.
  • [30] Hu, D. L., Huang, Y., Liu, X. B.: Moment Lyapunov exponent and stochastic stability of binary airfoil driven by non-Gaussian colored noise, Nonlinear Dynamics, 70, 1847-1859, 2012.
  • [31] Yang, C., Wu, C. Q., Zhang, P.: Estimation of Lyapunov exponents from a time series for n-dimensional state space using nonlinear mapping, Nonlinear Dynamics, 69, 1493-1507, 2012.
  • [32] Yang, C., Wu, C. Q.: On stability analysis via Lyapunov exponents calculated from a time series using nonlinear mapping|a case study, Nonlinear Dynamics, 59, 239-257, 2010.
  • [33] Sun, Y., Wu, C. Q.: A radial-basis-function network-based method of estimating Lyapunov exponents from a scalar time series for analyzing nonlinear systems stability, Nonlinear Dynamics, 70, 1689-1708, 2012.
  • [34] Yang, C., Wu, C. Q.: A robust method on estimation of Lyapunov exponents from a noisy time series, Nonlinear Dynamics, 64, 279-292, 2011.
  • [35] Zhu, W. Q.: Feedback Stabilization of Quasi Nonintegrable Hamiltonian Systems by Using Lyapunov Exponent, Nonlinear Dynamics, 36, 2, 455-470, 2004.
  • [36] Zhu, W. Q., Huang, Z. L.: Stochastic Stabilization of Quasi-Partially Integrable Hamiltonian Systems by Using Lyapunov Exponent, Nonlinear Dynamics, 33, 2, 209-224, 2003.
  • [37] Li, C.,Wang, J., Hu, W.: Absolute term introduced to rebuild the chaotic attractor with constant Lyapunov exponent spectrum, Nonlinear Dynamics, 68, 4, 575-587, 2012.
  • [38] Li, S. Y., Huang, S. C., Yang, C. H.: Generating tri-chaos attractors with three positive Lyapunov exponents in new four order system via linear coupling, Nonlinear Dynamics, 69, 3, 805-816, 2012.
  • [39] Fraga, L. G., Tlelo-Cuautle, E.: Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators, Nonlinear Dynamics, 76, 1503-1515, 2014.
  • [40] ] Rong, H., Meng, G., Wang, X.: Invariant Measures and Lyapunov Exponents for Stochastic Mathieu System, Nonlinear Dynamics, 30, 4, 313-321, 2002.
  • [41] Soriano, D. C., Fazanaro, F. I., Suyama, R.: A method for Lyapunov spectrum estimation using cloned dynamics and its application to the discontinuously-excited FitzHugh-Nagumo model, Nonlinear Dynamics, 67, 1, 413-424, 2012.
  • [42] Dąbrowski, A.: Estimation of the largest Lyapunov exponent from the perturbation vector and its derivative dot product, Nonlinear Dynamics, 67, 1, 283-291, 2012.
  • [43] Dąbrowski, A.: The largest transversal Lyapunov exponent and master stability function from the perturbation vector and its derivative dot product (TLEVDP), Nonlinear Dynamics, 69, 3, 1225-1235, 2012.
  • [44] Balcerzak, M., Dąbrowski, A., Kapitaniak, T., Jach, A.: Optimization of the Control System Parameters with Use of the New Simple Method of the Largest Lyapunov Exponent Estimation, Mechanics and Mechanical Engineering, 17, 3, 225-239, 2013.
  • [45] Pijanowski, K., Dąbrowski, A., Balcerzak, M.: New method of multidimensional control simplification and control system optimization, Mechanics and Mechanical Engineering, 19 2, 127-139, 2015.
  • [46] Dąbrowski, A.: Estimation of the the Largest Lyapunov exponent-like (LLEL) stability measure parameter from the perturbation vector and its derivative dot product (part 2) experiment simulation, Nonlinear Dynamics, 78, 3, 1601-1608, 2014.
  • [47] Parker, T. S., Chua, L. O.: Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, Berlin, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91f1fc95-6bd4-4e92-a348-bb99ebcd44a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.