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The dynamics of elastic plane waveguides is studied on the basis of the ex-
tended formulation of the plate theory of Nth order. The plate model is based on
the Lagrangian formalism of analytical dynamics combined with the dimensional re-
duction approach and the biorthogonal expansion of the spatial distribution of the
displacement. The boundary conditions shifted from the faces onto the base plane are
interpreted as constraints for the variational formulation of two-dimensional plate
models. The normal wave dispersion in plates is modelled, the convergence of the
approximate solutions is studied using the known exact solution for a plane layer as
a reference. The proposed plate theory is used to analyse the normal wave disper-
sion in power graded waveguides of both symmetric and asymmetric structures, the
locking phase frequencies for various power indices are computed.
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1. Introduction

Functionally graded materials (hereinafter referred as FGM) were pro-
posed primarily for the structures loaded by high temperatures to eliminate the
drawback of layered materials consisting in their low delamination strength due
to mismatches of thermal expansion factors of different layers [1, 2]. Plates or
shells with the properties graded across the thickness are typical FG structures
based on the composition of two constituents, the refractory ceramics and the
metal [3]. The study of the behaviour of graded thin-walled structures remains
topical nowadays; e.g. see [4-6]. In particular, the investigation of free vibra-
tions [7] and harmonic wave dispersion in graded plate or shell structures is
a basis for various non-destructive testing methods and for the estimation of the
impact of structural defects on the strength and dynamics of FGMs, [8–11].
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Only a few exact solutions for FGM shells of plates based on the three-
dimensional elasticity theory are known, e.g. [12–18]. At the same time the clas-
sical Kirchhoff’s and even the refined first-order shear deformation plate theories
being still consistent with low-frequency oscillations of thin-walled FG structures
[19–21] could fail in the high-frequency dynamics of FG plates. Moreover, in the
same cases the classical models lead to the results that differ significantly from
the ones offered by the “direct approach” due to the different ways of determina-
tion of the transverse shear stiffness, as it was shown in [7]. Indeed, most of plate
models accounting for the transverse shear deals with the so-called “shear correc-
tion factor” that is not defined uniquely, [7, 22, 23]. The direct approach seems to
be more reliable, but the known results are limited by the analysis of some low-
est eigenvalues [7] for oscillating plates. On the other hand, the high frequency
vibrations lead to some effects such as boundary layers near the faces [20].

The refinement of plate models consists in the accounting for higher kine-
matical degrees of freedom in addition to the translation and rotation of the
middle surface point; e.g. see, [24–26]. Such models are useful for thin-walled
FG structures, [27–31], but they are not free from some drawbacks; in particu-
lar, “. . . not in any case the boundary conditions on the upper and lower faces
are fulfilled” [7]. Many methods can be used to refine plate and shell models;
the asymptotic approach [32, 33] or [34] seems to be the most efficient way of
the qualitative analysis of thin-walled structures, but it does not allow one to
construct the complete hierarchies of solutions [35] that approximating three-
dimensional solutions in various norms [36]. On the other hand, the finite el-
ement simulation [37] based on solid modelling remains the main approach in
the practical engineering. The formal method of expansion of the displacement
into series may be more efficient for the numerical simulation combined with
the finite element [36] or meshless approaches [38]; as well a power series [20,
39–41], as a special function [28, 29, 42], could be used. In particular, the use
of the Legendre polynomials as an expansion system allows one to obtain the
reliable solutions for guided waves dynamics in functionally graded waveguides
[43–47]. One of the universal approaches of construction of general higher-order
is based on the generalized Fourier series [24, 25, 27, 36, 39]. Let us note also the
sampling surface method [4, 48–51]; this formulation can be combined efficiently
with a finite element simulation [52]. The application of the sampling surfaces
approach to functionally graded structures is presented in [53].

An extended higher-order plate theory of I. N. Vekua type [24] is based on the
well-studied dimensional reduction approach [24, 25, 27, 36, 39, 54–56] combined
with the Lagrangian formalism of the analytical dynamics of constrained con-
tinuum systems. Such an approach leads to the interpretation of plate models as
two-dimensional continua with sets of appropriate properties obtained from the
reduction process [26, 55, 57]. Accordingly to [26], the model of a shell or a plate
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is defined on the two-dimensional manifold corresponding to the base surface
within the configuration space, the set of field variables, the surface and contour
Lagrangian densities obtained from the spatial ones after the dimensional reduc-
tion (e.g. see [26, 57]) and the constraint equations. The field variables of the 1st

kind are defined as biorthogonal expansion coefficients for the spatial distribution
of the displacement vector field instead of the orthogonal series used earlier by
[24, 25, 39, 55]. Such a formulation of a two-dimensional model is unified for dif-
ferent basis (Legendre polynomials, finite elements [26], etc.). The so-called “plate
theory of Nth order” results in the equations of motion having a regular structure;
they could be efficiently derived using various computer algebra systems support-
ing main tensor algebra operations. The constraint equations appear as a result
of shifting of the boundary conditions from the faces onto the base surface after
the dimensional reduction [54, 58]. It is shown that the kinematic boundary con-
ditions result in the holonomic constraints whereas the dynamic ones lead to the
non-holonomic constraints [59]. The constrained problem can be solved by the
Lagrange multiplier method [58] and allows one to obtain consistent low-order
approximations [40]. Thus, the “extended”, or “constrained” theory of plates al-
lows one to eliminate the known drawback of higher order theories noted in [7].

The “extended” theory of plates is used to solve the problem of normal wave
dispersion in functionally graded elastic plates. The convergence of solutions
based on the plate theory of Nth order was analysed. In [60], the Legendre poly-
nomials were used as a basis, and in [61] for the “finite layer” variant of the plate
model under the unified “elementary” formulation neglecting the constraints and
leading to approximated wave reflection conditions on the faces; the analogous
results for the extended formulation are shown below. Moreover, the wave dis-
persion in both symmetrically and asymmetrically power-graded elastic layers is
investigated on the basis of the extended plate theories of various orders, and
the locking frequencies for different power indices are computed.

2. Variational formulation of the higher-order plate theory based on

the analytical dynamics of 2D continua and the finite element dis-

cretization

Let us consider the plate as a three-dimensional body V ∈ R
3 bounded

by face planes S± and piecewise-smooth lateral surface SB, ∂V = S± ⊕ SB,
[26, 57, 58] and let us introduce the base plane S with curvilinear coordinates
ξα ∈ Dξ ⊂ R

2, α = 1, 2:

∀M ∈ S r(M) = r(ξ1, ξ2).

Let us define the normal coordinate ξ3 ∈ [h−, h+] where h± corresponds to
upper and lower faces of the plate, respectively:
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∀M± ∈ S± R(M±) = r(ξ1, ξ2) + h±n,

therefore
∀M ′ ∈ V̄ R(M ′) = r(ξ1, ξ2) + ξ3n,

where n is the normal unit vector at a point M ∈ S:

n =
r1 × r2√

a
, rα =

∂r(ξ1, ξ2)

∂ξα
, a = det aαβ , aαβ = rα · rβ ,

here rα are covariant base vectors on the plane S and aαβ is the covariant metrics
while the symbols “ ·” and “×” denote the dot and cross products, respectively.
Thus, the displacement vector field can be referred to the contravariant vector
triad rβ = aαβrβ , n:

(2.1) u(M ′, t) = uα(ξ1, ξ2, ξ3, t)rα(ξ1, ξ2) + u3(ξ
1, ξ2, ξ3, t)n.

The dynamics of the elastic body V̄ could be defined by Hamilton’s principle [26]:

(2.2) δH = 0, H =
t1
∫
t0

(∫

V

LV (u, u̇,∇⊗ u)dV +

∫

∂V

L∂V (u)dS

)
dt,

u|t=t0 = u0, u̇|t=t0 = v0,

here and below u̇ ≡ ∂u/∂t, t ∈ [0,∞) is the time parameter, ∇ = rβ∂β + n∂3 is
the “nabla” operator, the symbol “⊗” denotes the tensor product. The volumetric
density of the Lagrangian LV and the surface density L∂V are defined as follows:

(2.3)
LV (u, u̇,∇⊗ u) =

1

2
ρu̇ · u̇ − 1

2
(∇⊗ u)T : C : (∇⊗ u) + ρF · u,

L∂V (u) = q± · u|M∈S± + qB · u|M∈SB
,

ρ is the mass density, C is the elasticity tensor, F is the bulk force vector, and
q±, qB are resultant force vectors on the faces S± and on the lateral surface SB,
respectively.

A two-dimensional plate model could be interpreted as a “material surface”
furnished by a set of appropriate mechanical properties, e. g. tangent and bend-
ing stiffness, transverse shear stiffness, and several higher-order quantities. Such
a treatment is quite similar to the “direct approach” proposed in [62] and to
two-dimensional Cosserat continuum models [63, 64]. Contrarily to these ones,
all mechanical properties are defined as a result of the dimensional reduction of
the three-dimensional variational problem given by (2.2) and (2.3).

On the other hand, the two-dimensional plate model is a continuum La-
grangian system that could be defined within a configuration space Ω = {u(k)}
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with a set of field variables u(k), k ∈ N∪{∅}, the correspoding densities of the La-
grangian LS(u(k), u̇(k), ∇̄⊗u(k)), LΓ (u(k)) defined on the plane S and the contour
Γ = S ∩ SB [26, 57, 60] and by some constraint equations f(u(k), ∇̄ ⊗ u(k)) = 0.
Here and below ∇̄ = rα∂α denotes the “nabla” opterator on the plane S. The
dynamics of a plate is given by the Hamilton principle:

(2.4) δ

t1∫

t0

[∫

S

LS(u(k), u̇(k), ∇̄ ⊗ u(k))dS +

∫

∂S

LΓ dΓ

]
dt = 0,

u(k)|t=t0 = u
(k)
0 , u̇(k)|t=t0 = v

(k)
0 .

The dimensional reduction [24, 25, 27, 54] offers an efficient way to con-
struct the variational formulation (2.4) of the two-dimensional plate model on
the basis of the three-dimensional problem statement (2.2). Let us consider the
biorthogonal system p(k)(ζ), p(k)(ζ), where ζ ∈ [−1, 1] is the dimensionless nor-
mal coordinate:

(p(k), p
(m))1 ≡

1∫

−1

p(k)(ζ)p
(m)(ζ)dζ = δ

(m)
(k) ,

ζ = 2
[
ξ3 − 1

2(h+ + h−)
]
/(h+ − h−),

and let us assume the components uα(ξ1, ξ2, ζ, t) and u3(ξ
1, ξ2, ζ, t) be square

integrable over [−1, 1] ∋ ζ. Thus, the three-dimensional displacement field (2.1)
could be defined as follows:

u(ξ1, ξ2, ζ, t) = u(k)(ξ1, ξ2, t)p(k)(ζ)(2.5)

≡ [u(k)
α (ξ1, ξ2, t)rα + u

(k)
3 (ξ1, ξ2, ζ)n]p(k)(ζ),

u(k)
α = (uα, p

(k))1, u
(k)
3 = (u3, p

(k))1.(2.6)

As a result, we can reduce the volumetric and boundary densities of the La-
grangian to its surface and contour densities [57]; for an orthotropic plate we have

(2.7) LS(u(k)
α , u̇(k)

α ,∇βu
(k)
α , u

(k)
3 , u̇

(k)
3 ,∇βu

(k)
3 )

=
1

2
ρ
(m)
(k) (u̇α

(m)u̇
(k)
α + u̇3

(m)u̇
(k)
3 ) + Fα

(k)u
(k)
α + F 3

(k)u
(k)
3

− 1

2
(Cαβγδ

(km)∇δu
(m)
γ + h−1Cαβ33

(kn) D
(·n)
(m·)u

(m)
3 )∇βu

(k)
α

− 1

2h
(C33γδ

(lm)∇δu
(m)
γ + h−1C3333

(ln) D
(·n)
(m·)u

(m)
3 )D

(·l)
(k·)u

(k)
3

− 1

2h
C3α3β

(km) (∇βu
(m)
3 + h−1D

(·m)
(n·) u

(n)
β )(∇βu

(k)
3 + h−1D

(·k)
(n·)u

(n)
β ),

LΓ = qα
(k)Bu

(k)
α + q3(k)Bu

(k)
3 ,
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The linear operators used in (2.7) are introduced following [26], [57]:

(2.8)

D
(·k)
(n·) = (dp(n)/dζ, p

(k))1,

ρ
(m)
(k) = (ρp(m), p(k))1,

Cijpq
(km) = (Cijpqp(k), p(m))1,

here Cijkl are the contravariant components of the elasticity tensor C.
The resultant force vector components on the plate contour are introduced

in [26]:
qi
B(k) = (qi|M∈SB

, p(k))1.

The initial conditions can be written as follows:

(2.9) uα
(k)|t=t0 = Uα

(k); u̇α
(k)|t=t0 = V α

(k), u3
(k)|t=t0 = U3

(k), u̇α
(k)|t=t0 = V 3

(k).

The biorthogonal expansion coefficients u(k) can be interpreted hence as field
variables of the first kind [26, 57]. For the linear system (2.2), (2.3) the further
reduction of the three-dimensional problem consists in the projection of the
configuration space Ω onto its subspace ΩN (k = 0, 1, . . . , N) [26]. As a result,
the dynamics of the plate is approximated by N + 1 vector degrees of freedom
u(k). The equations of motion of the so-called plate theory of Nth order can
be derived as Lagrange equations of the second kind for the two-dimensional
continuum system given by (2.4), (2.7), (2.9) (see [26, 57], and [60]):

ρ(km)ü
α(m) = Cαβγδ

(km)∇β∇δu
(m)
γ − h−2D

(·n)
(k·)C

α33 γ
(ns) D̄

(·s)
(m·)u

(m)
γ(2.10)

− h−1[D
(·n)
(k·)C

α33β
(nm) − Cαβ3 3

(kn) D̄
(·n)
(m·)]∇βu

(m)
3 ,

ρ(km)ü
3(m) = C3β3δ

(km)∇β∇δu
(m)
3 − h−2D

(·n)
(k·)C

3333
(ns) D̄

(·s)
(m·)u

(m)
3(2.11)

− h−1[D
(·n)
(k·)C

33γβ
(nm) − C3β3γ

(km)D̄
(·n)
(k·) ]∇βu

(m)
γ .

Their natural boundary conditions can be written in the following notation [57]:

[(Cαβγδ
(km)∇δu

(m)
γ + Cαβ3

(km)u
(m)
3 )νβ − qα

(k)]δu
(k)
α |Γ = 0,(2.12)

[(C3β3δ
(km)∇δu

(m)
3 + C3βγ

(km)u
(m)
γ )νβ − q3(k)]δu

(k)
3 |Γ = 0.(2.13)

The initial-boundary value problem statement (2.9)–(2.13) corresponds to
the so-called “elementary” plate theory of the Nth order that allows one to fulfil
the boundary conditions on the faces S± after solution’s convergence at the end
points ζ = ±1. To satisfy the boundary conditions exactly we should use the
“extended” theory of plates proposed in [58].
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Let us consider the dynamic boundary conditions on the faces S± correspond-
ing to the three-dimensional statement of the elasticity theory:

(2.14)
(C33γδ∇δuγ + h−1C3333∂ζu3)|ζ=±1 = q3±,

Cα3β3(∇βu3 + h−1uβ)|ζ=±1 = qα
±.

Substituting the expansions (2.5) into the boundary conditions (2.14) and
taking into account the formulae (2.8), we obtain the following relations [58]:

(2.15)
Cα3δ3

(km)(∇δu
(k)
3 + h−1D

(·k)
(m·)u

(m)
δ )p(m)(±1) ± qα

± = 0;

(C33γδ
(km)∇δu

(k)
γ + h−1C3333

(km)D
(·k)
(n·)u

(n)
3 )p(m)(±1) ± q3± = 0.

The equations (2.15) are defined on the base plane S and expressed through

the field variables of the 1st kind u
(k)
i and their covariant derivatives, there-

fore they could be interpreted as non-holonomic constraint equations for the
Lagrangian two-dimensional system (2.4), (2.7), (2.9). Thus, the plate model
allowing one to fulfil the boundary conditions on the faces S± becomes con-
strained; the approproate dynamic equations and natural boundary conditions
can be derived using the Lagrange multiplier method [58, 59]. However, an al-
ternative approach for spectral problems is shown below. Let us note that the
kinematic boundary conditions result in the holonomic constraints [59].

Let us also note that the unified formulation (2.4)–(2.9) of the plate theory
of Nth order presented above is invariant on the used base system p(k)(ζ); one
can use as well the orthogonal base functions, e.g. the Legendre polynomials,
as the piecewise-linear compact functions corresponding to the finite element
discretization (“finite layer” model) [61]:

(2.16)

p(0)(ζ) = p(0,1)(ζ), . . . , p(k)(ζ) = p(k,2)(ζ) + p(k+1,1)(ζ),

k = 1, 2, . . . N − 1,

. . . p(N)(ζ) = p(N,2)(ζ),

p(k,1) =






ζ − ζk+1

ζk+1 − ζk
, ζ ∈ [ζk, ζk+1],

0, ζ /∈ [ζk, ζk+1],

p(k,2) =






ζ − ζk
ζk+1 − ζk

, ζ ∈ [ζk, ζk+1],

0, ζ /∈ [ζk, ζk+1],

ζk = h− +N−1(h+ − h−), k = 0, 1, . . . , N + 1.

The Shauder basis allows one to consider the classical plate model with two
degrees of freedom at each point of the base surface, the translation and the
rotation, enriched by the finite element discretization. These three types of base
functions are shown in Fig. 1.
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(a) (b) (c)

Fig. 1. Various base systems p(k)(ζ) used within an unified formulation of the plate theory
of Nth order: Legendre polynomials (a), piecewise linear shape functions (b), combined model

given by Shauder basis (c).

3. Modelling of the normal wave dispersion in elastic plates on the

basis of the extended plate theory of Nth order

Let us consider a layer of thickness 2h referred to the Cartesian frame
Ox1x2x3. The material is assumed to be ideally elastic and graded across the
thickness; E(ζ) is the Young modulus, ν is the Poisson ratio, µ(ζ) is the shear
modulus and ρ(ζ) is the mass density. Thus, we obtain the following stiffness
and mass properties for the plate:

Cαβγδ
(km) = λ(km)a

αβaγδ + µ(km)(a
αγaβδ + aαδaβγ), Cα3β3

(km) = µ(km)a
αβ ,

C3333
(km) = λ(km) + 2µ(km), Cαβ33

(km) = λ(km)a
αβ , E(km) = (E(ζ)p(k),p(m))1

λ(km) = νE(km)(1 − 2ν)−1(1 + ν)−1, µ(km) = 1
2E(km)(1 + ν)−1,

ρ(km) = (ρ(ζ)p(k),p(m))1.

The example of a typical power graded plate with two constituents, the ce-
ramics and the metal (e. g. see [65]), is considered below; so, the elastic moduli of
the constituents are denoted hereinafter as EC, EM, and the corresponding mass
densities as ρC, ρM. We can define the Young modulus and the mass density at
a point ζ by the following formulae:

E(ζ) = EC [ẼM + q(ζ)∆Ẽ], ẼM = E−1
C EM, ∆Ẽ = E−1

C (EC − EM),(3.1)

ρ(ζ) = ρC[ρ̃M + q(ζ)∆ρ̃], ρ̃M = ρ−1
C ρM, ∆ρ̃ = ρ−1

C (ρC − ρM).(3.2)

Accordingly to [60] and [61], let us introduce the following dimensionless

coordinate ξ = x1h
−1, time τ = tc2h

−1, and field variable ũ
(k)
α = u

(k)
α h−1;
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c2 =
√
ρ−1
C µC denotes the shear wave velocity in the pure ceramics. Thus, ac-

counting for the homogeneous boundary conditions, qi
± = 0 and for the absence

of bulk forces, F i
(k) = 0, we obtain the following dimensionless equations of

motion corresponding to (2.10), (2.11) [61]:

(3.3)

R(km)∂
2
τu

(m)
1 = β−2V(km)∂

2
ξu

(m)
1 −D

(·n)
(k·)V(ns)D̄

(·s)
(m·)u

(m)
1

− [D
(·n)
(k·)V(nm) − (β−2 − 2)V(kn)D̄

(·n)
(m·)]∂ξu

(m)
2 ,

R(km)∂
2
τu

(m)
2 = V(km)∂

2
ξu

(m)
2 + β−2D

(·n)
(k·)V(ns)D̄

(·s)
(m·)u

(m)
2

− [(β−2 − 2)D
(·n)
(k·)V(nm) − V(kn)D̄

(·n)
(m·)]∂ξu

(m)
1 ,

c1 =
√
ρ−1

C (λC + 2µC), β2 = c−2
1 c22,

V(km) = ẼG(km) + ∆ẼQ(km),

R(km) = ρ̃G(km) + ∆ρQ(km),

Q(km) = (q(ζ)p(k), p(m))1, G(km) = (p(k), p(m))1.

Let the normal wave propagate along the axis Oξ:

(3.4) u(k) = U(k) exp[i(κξ − ωτ)], i =
√
−1,

ω̃ = ωh/c2 is the dimensionless phase frequency (tildes are omitted hereinafter)
and κ = kh is the dimensionless wavenumber whereas U(k) denotes the am-
plitude. Substitution of (3.4) into the equations of motion (3.3) results in the
spectral problem analogous to [60, 61]:

|A − ω2P| = 0,(3.5)

A =(3.6)
(

κ2β−2V(km) +D
(·n)
(k·)V(ns)D̄

(·s)
(m·) iκ[D

(·n)
(k·)V(nm) − (β−2 − 2)V(kn)D̄

(·n)
(m·)]

iκ[(β−2 − 2)D
(·n)
(k·)V(nm) − V(kn)D̄

(·n)
(m·)] κ2V(km) + β−2D

(·n)
(k·)V(ns)D̄

(·s)
(m·)

)
,

P =

(
R(km) 0

0 R(km)

)
.(3.7)

The spectral problem given by (3.5)–(3.7) corresponds to the “elementary” plate
theory. To fulfil the boundary conditions on S± we have to consider also the
constraint equations; substitution of (3.4) into Eqs. (2.15) results in the following
linear constraints [66]:

B · U = 0, B = (B+ B−)T,(3.8)

B± =

(
iκ(β−2 − 2)V(km)p

(m)(±1) β−2V(mn)D̄
(·n)
(k·)p

(m)(±1)

V(mn)D̄
(·n)
(k·)p

(m)(±1) iκV(km)p
(m)(±1)

)
.(3.9)
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We could obtain hence the phase frequencies from the solution of the con-
strained stationary values problem for two quadratic forms A and P accordingly
to [67]:

(3.10)
UT · A · U
U · P · U = 0, B · U = 0.

Following [76], let us introduce the QZ decomposition for the constraint ma-
trix (3.9)

QT · BT · Z =

(
S 0

0 0

)

(2N+2)×4

,

As a result, we obtain the following operator accounting for the constraints
(3.8):

AC = QT · A · Q,(3.11)

AC =

(
Ā11 Ā12

Ā21 Ā22

)

(2N+2)×(2N+2)

,

and the stationary values ωk for the pair A,P can be found from the uncon-
strained problem:

(3.12) (Ā22 − ω2P22) · Ū = 0, U = QT · U.

The eigenvectors corresponding to the eigenvalue ωk are defined as follows:

(3.13) Uk = Q · [0 0 0 0 Ū
k(m)
1 Ū

k(m)
3 ]T , k ∈ [1, 2N − 2] ∩ Z.

4. Convergence analysis: the homogeneous isotropic plate

The convergence analysis can be performed on the basis of the well-known
analytical solution for the wave dispersion problem in an isotropic homogeneous
layer based on the elasticity theory; this solution for the phase frequencies is used
hereinafter as a reference, and the solution of the constrained spectral problem
(3.10) of the plate theory of Nth order where q(ζ) ≡ 1, V(mn) = R(mn) = G(mn).
The spectrum of the system consists in two subspectra S and A corresponding
to the longitudinal and bending waves in the layer [66]:

S : k,m = {2n, N+2n}, A : k,m = {2n−1, N+2n−2}, n ∈
[
0,
[

1
2(N−1)

]]
∪Z,

and the waveforms can be defined in terms of the plate theory as follows [67]:

(4.1) un
1 (ζ) = U

k(m)
1 p(m)(ζ), un

3 (ζ) = U
k(m)
3 p(m)(ζ).
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Fig. 2. Phase frequencies 2ω/π of longitudinal modes, k, m = {2n, N + 2n + 2},
n ∈

ˆ

0,
ˆ

1
2
(N + 1)

˜˜

∪ ⋉, extended plate theory of 16th order.

Fig. 3. Phase frequencies 2ω/π of longitudinal modes, β = c2/c1, βR = cR/c1,
k, m = {2n + 1, N + 2n}, n ∈

ˆ

0,
ˆ

1
2
(N + 1)

˜˜

∪ ⋉, extended plate theory of 16th order.

The dispersion curves for the phase frequencies based on the extended plate
theory of 16th order using the Legendre polynomials are shown below in Fig. 2
(longitudinal modes) and Fig. 3 (bending modes).

The branches corresponding to both lowest-order longitudinal and bending
modes tend to the frequency of the Rayleigh wave, ωR = κβ−1

R where βR = cR/c1
is the dimensionless Rayleigh wave velocity, as the dimensionless wavenumber
tends to infinity, κ→ ∞. The similar results were obtained in [60] on the back-
ground of the “elementary” theory using the Legendre polynomials as well as in
[61] on the basis of the “finite layer” model (2.16).
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The convergence analysis of the locking frequencies at κ → 0 to their exact
values is shown in the Table 1 for the longitudinal modes and in the Table 2 for
the bending modes.

Table 1. Convergence of the locking frequencies approximation for longitudinal
normal modes on the background of the N th order extended plate theory,
N = 1 . . . 16, as compared with the exact solution (Ex.); n – mode number;

N – order of the plate theory.

n
N

1 2 3 4 5 6 7 8 9 10

2 0.00 – – – – – – – – –

3 0.00 1.89 – – – – – – – –

4 0.00 1.89 1.97 – – – – – – –

5 0.00 1.91 1.98 5.68 – – – – – –

6 0.00 1.91 2.00 4.03 5.68 – – – – –

7 0.00 1.91 2.00 4.03 5.74 9.83 – – – –

8 0.00 1.91 2.00 4.02 5.73 6.37 9.82 – – –

9 0.00 1.91 2.00 4.02 5.72 6.37 9.64 14.67 – –

10 0.00 1.91 2.00 4.00 5.72 6.11 9.13 9.64 14.67 –

11 0.00 1.91 2.00 4.00 5.72 6.11 9.13 9.51 13.73 20.40

12 0.00 1.91 2.00 4.00 5.72 6.00 8.35 9.52 12.40 13.73

13 0.00 1.91 2.00 4.00 5.72 6.00 8.35 9.53 12.40 13.32

14 0.00 1.91 2.00 4.00 5.72 6.00 8.00 9.53 10.84 13.32

15 0.00 1.91 2.00 4.00 5.72 6.00 8.00 9.53 10.84 13.34

16 0.00 1.91 2.00 4.00 5.72 6.00 8.00 9.53 10.05 13.34

Ex. 0.00 1.91 2.00 4.00 5.72 6.00 8.00 9.53 10.00 12.00

It can be seen that the extended, or “constrained”, plate theory of the 16th

order secures the convergence of the 9 lowest phase frequencies of longitudinal
modes as well as of the 9 lowest phase frequencies of the bending modes. Thus,
it offers the faster convergence as compared with the “elementary” theory; the
solution [60] that is based on the Legendre polynomials and neglects the con-
straints leads to the same approximation errors at N = 20. At the same time
the unconstrained “finite layer” plate theory secures the convergence of the 10
lowest locking frequencies of longitudinal modes as well as of the 9 lowest locking
frequencies of the bending modes at N = 28 [61]; the “spectral” element solution
based on the linear shape functions (2.16) converges slowly as compared with
the one based on the Legendre polynomials [60].

Let us construct the waveforms following from the eigenvectors of the oper-
ator (3.6):
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Table 2. Convergence of the locking frequencies approximation for bending
normal modes on the background of the N th order extended plate theory.
N = 1 . . . 16 as compared with the exact solution (Ex.); n – mode number;

N – order of the plate theory.

n
N

1 2 3 4 5 6 7 8 9 10

2 0.00 – – – – – – – – –

3 0.00 0.99 – – – – – – – –

4 0.00 0.99 3.77 – – – – – – –

5 0.00 1.00 2.98 3.77 – – – – – –

6 0.00 1.00 2.98 3.82 7.68 – – – – –

7 0.00 1.00 3.00 3.81 5.16 7.68 – – – –

8 0.00 1.00 3.00 3.81 5.16 7.67 12.14 – – –

9 0.00 1.00 3.00 3.81 5.06 7.67 7.70 12.14 – –

10 0.00 1.00 3.00 3.81 5.06 7.62 7.70 11.65 17.41 –

11 0.00 1.00 3.00 3.81 5.00 7.20 7.62 10.70 11.65 17.41

12 0.00 1.00 3.00 3.81 5.00 7.20 7.62 10.70 11.41 15.92

13 0.00 1.00 3.00 3.81 5.00 7.00 7.62 9.56 11.41 14.21

14 0.00 1.00 3.00 3.81 5.00 7.00 7.62 9.56 11.42 14.21

15 0.00 1.00 3.00 3.81 5.00 7.00 7.62 9.00 11.42 12.19

16 0.00 1.00 3.00 3.81 5.00 7.00 7.62 9.00 11.41 12.19

Ex. 0.00 1.00 3.00 3.81 5.00 7.00 7.62 9.00 11.00 11.43

(4.2) un
α(ζ) = Ukn

1,2pk(ζ), [Ukn
1 Ukn

2 ] = Un, k = 0, . . . , N, n = 0, . . . , N.

Let us consider the exact solution of the Rayleigh–Lamb problem at κ → 0.
The symmetric modes are defined as follows:

un∗
1 = A11 cosπmζ, u2 ≡ 0, 2π−1ω = 2m,(4.3)

u1 = 0, un∗
2 = A12 sinπ

2m+ 1

2
ζ, 2π−1ω = (2m+ 1)β−1,(4.4)

for m = 0, 1, 2, . . .; while the antisymmetric modes are given by the formulae

u1 ≡ 0, un∗
2 = A21 cosπmζ, ω = 2β−1m, m = 0, 2, . . . ,(4.5)

un∗
1 = A22 sinπ

2m+ 1

2
ζ, u2 ≡ 0, ω = 2m+ 1, m = 0, 1, 2 . . . .(4.6)

Here Aij are arbitrary constants. Thus, the relative error of the approximate
waveforms obtained on the background of the Nth order plate theory can be
estimated using the norm for the Hilbert space H[−1, 1] taking into account
(4.2)–(4.6):
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∆n =
‖un

α(ζ) − un∗
α (ζ)‖

‖un∗
α (ζ)‖ , ‖un

α(ζ)‖2 = (un
α, u

n
α)1 =

1∫

−1

aαβun
α(ζ)un

β(ζ)dζ.

The relative errors of the approximate waveforms are shown below in the
Tables 3 and 4 for longitudinal and bending modes respectively.

Table 3. Relative error of approximation of the longitudinal modes at locking
frequencies.

n
N

2 3 4 5 6 7 8 9 10

1 0.20 – – – – – – – –

3 0.01 0.40 – – – – – – –

5 0.00 0.03 1.03 1.36 – – – – –

7 0.00 0.00 0.01 0.21 1.26 – – – –

9 0.00 0.00 0.00 0.01 0.42 1.21 – – –

11 0.00 0.00 0.00 0.00 0.10 0.01 1.30 – –

13 0.00 0.00 0.00 0.00 0.01 0.00 0.76 – –

15 0.00 0.00 0.00 0.00 0.00 0.00 0.41 1.03 1.39

17 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.62

19 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.31

21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09

Table 4. Relative error of approximation of the bending modes at locking
frequencies.

n
N

2 3 4 5 6 7 8 9 10

1 0.19 – – – – – – – –

3 0.00 0.52 0.43 – – – – – –

5 0.00 0.11 0.03 0.70 – – – – –

7 0.00 0.01 0.00 0.31 – – – – –

9 0.00 0.00 0.00 0.06 1.41 1.19 1.21 – –

11 0.00 0.00 0.00 0.00 0.19 0.00 0.71 – –

13 0.00 0.00 0.00 0.00 0.02 0.00 0.36 – –

15 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.40 1.21

17 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.24 0.00

19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00

21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The first four normal waveforms (4.2) obtained on the background of the ap-
proximate solution are shown in Fig. 4 (longitudinal waves) and Fig. 5 (bending
waves).
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(a) (b)

Fig. 4. Dimensionless normal waveforms of longitudinal waves at locking frequencies
(κ = 0): (a) longitudinal displacement ũn

1 (ζ), n = 1, . . . , 4; (b) transversal displacement
ũn

3 (ζ), n = 1, . . . , 4; exact solution (solid lines), extended plate theory of 16th order (dots).

(a) (b)

Fig. 5. Dimensionless normal waveforms of bending waves at locking frequencies (κ = 0):
(a) longitudinal displacement ũn

1 (ζ), n = 1, . . . , 4; (b) transversal displacement ũn

3 (ζ),
n = 1, . . . , 4; exact solution (solid lines), extended plate theory of 16th order (dots).

The stress components corresponding to the waveforms (4.2) are given by (4.7):

(4.7)

σ11(ζ,K)|κ=0 = V(kn)D̄
(·n)
(m·)U

K(m)
3 p(k)(ζ),

σ13(ζ,K)|κ=0 = V(kn)D̄
(·n)
(m·)U

K(m)
1 p(k)(ζ),

σ33(ζ,K)|κ=0 = β−2V(kn)D̄
(·n)
(m·)U

K(m)
3 p(k)(ζ).
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(a) (b)

Fig. 6. Normalized distributions of sterss components corresponding to the locking
frequencies of longitudial waves: (a) transverse shear stress, σk

13(ζ); (b) transverse normal
stress, σk

33(ζ): exact solution (solid line), extended plate theory of 16th order (dots).

The normalized distributions of the stresses (4.7), σij(ζ)/max |σij(ζ)| (ζ ∈
[−1, 1]), corresponding to the longitudinal modes of normal waves at κ→ 0 are
presented in Fig. 6. As it could be seen, the extended theory of plates of the
Nth order accounting for the constraints (3.8) allows one to fulfil the boundary
conditions on the faces of a layer.

For more details see also [26, 60, 61] and [66].

5. Modelling of normal wave dispersion in functionally graded plates

Let the plate be graded symmetrically with respect to its mid-plane, i.e.
the “two-sided” functionally graded structure with the ceramics volume ratio
according to the power law (5.1) is considered below:

(5.1) q(ζ) = |ζ|PP ∈ R+ ∪ {0}.

The variations of the Young modulus and the mass density across the plate
thickness are given by the formulae (3.1), (3.2). Let us consider a material with
two constituents [65], an Aluminium phase with the Young modulus EM =
7.0 × 1010 Pa and a phase of Al2O3 ceramics with the Young modulus EC =
3.8× 1011 Pa. The mass densities of these phases are equal to ρC = 4000 kg/m3

and ρM = 2700 kg/m3, respectively, while the Poisson ratio is equal to 0.31 for
both phases.

The further investigation is based on the extended plate theory of 18th order.
The dependencies of the locking frequencies obtained with Legendre polynomials
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as base functions p(k)(ζ) on the power law index P are shown in the Table 5
(longitudinal modes) and in the Table 6 (bending modes).

Table 5. Dimensionless locking frequencies of the longitudinal modes in the
symmetrically graded metal-ceramic plates with various power law indices P .

n
P

2 3 4 5 6 7 8 9 10

0 1.91 2.00 4.00 5.72 6.00 8.00 9.53 10.00 12.05

1 1.22 1.64 3.20 4.45 4.79 6.41 7.52 8.18 10.36

2 1.05 1.36 2.77 3.94 4.17 5.60 6.62 7.21 9.31

3 1.00 1.22 2.57 3.64 3.88 5.19 6.15 6.64 8.64

4 0.98 1.15 2.45 3.45 3.71 4.96 5.87 6.29 8.21

5 0.97 1.10 2.37 3.31 3.59 4.81 5.68 6.07 7.83

6 0.96 1.08 2.30 3.22 3.51 4.71 5.55 5.92 7.54

7 0.96 1.06 2.26 3.16 3.45 4.63 5.44 5.81 7.32

8 0.96 1.05 2.22 3.11 3.40 4.57 5.36 5.73 7.16

9 0.96 1.04 2.20 3.08 3.36 4.52 5.30 5.67 7.03

10 0.96 1.04 2.17 3.05 3.33 4.48 5.24 5.62 6.93

Table 6. Dimensionless locking frequencies of the bending modes in
symmetrically graded metal-ceramic plates with various power law indices P .

n
P

2 3 4 5 6 7 8 9 10

0 1.00 3.00 3.81 5.00 7.00 7.62 9.00 11.02 11.43

1 0.64 2.33 3.12 3.95 5.57 6.10 7.30 9.12 9.36

2 0.55 2.07 2.59 3.47 4.88 5.28 6.42 7.95 8.43

3 0.52 1.91 2.32 3.23 4.54 4.90 5.92 7.40 7.79

4 0.51 1.81 2.18 3.08 4.34 4.67 5.62 7.07 7.34

5 0.51 1.74 2.10 2.98 4.21 4.51 5.43 6.85 7.01

6 0.51 1.69 2.05 2.91 4.11 4.39 5.31 6.69 6.77

7 0.51 1.66 2.02 2.86 4.04 4.31 5.22 6.57 6.59

8 0.51 1.63 2.00 2.81 3.99 4.24 5.15 6.45 6.48

9 0.51 1.61 1.99 2.78 3.94 4.19 5.09 6.35 6.41

10 0.51 1.60 1.98 2.75 3.90 4.14 5.05 6.27 6.34

Finally, let us consider the asymmetrically graded plate with the ceramics
volume ratio according to the power law (5.2):

(5.2) q(ζ) = 2−p(1 + ζ)p.
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The dependencies of the locking frequencies obtained with Legendre polyno-
mials as base functions p(k)(ζ) on the power law index P are shown below in the
Table 7.

Table 7. Dimensionless locking frequencies in asymmetrically graded
metal-ceramic plates with various power law indices P .

n
P

2 3 4 5 6 7 8 9 10

0 1.00 1.91 2.00 3.00 3.81 4.00 5.00 5.72 6.00

1 0.81 1.54 1.58 2.36 3.01 3.14 3.92 4.49 4.70

2 0.67 1.27 1.36 2.05 2.59 2.73 3.42 3.90 4.11

3 0.60 1.14 1.26 1.90 2.40 2.54 3.18 3.63 3.82

4 0.56 1.07 1.20 1.82 2.28 2.43 3.04 3.46 3.65

5 0.54 1.03 1.16 1.76 2.21 2.35 2.95 3.35 3.54

6 0.53 1.00 1.13 1.72 2.15 2.30 2.88 3.27 3.47

7 0.52 0.99 1.10 1.69 2.10 2.26 2.84 3.21 3.41

8 0.52 0.98 1.09 1.66 2.07 2.23 2.80 3.17 3.36

9 0.51 0.97 1.07 1.64 2.05 2.21 2.77 3.13 3.33

10 0.51 0.97 1.06 1.63 2.03 2.19 2.74 3.10 3.30

The presented results shows that the locking frequencies for power graded
waveguides of both symmetric and asymmetric structures drop, but the lowest
frequencies almost converge at power law indices exceeding 10 when the material
becomes “skinned” with only small ceramic-rich layers near plate faces; contrar-
ily, for the prevailing high-modulus ceramics and thin metal “skins” the phase
frequencies raise [61]. The convergence is faster than the one corresponding to
the “spectral” element plate model used in [61] and [68].

6. Conclusions

The extended higher-order theory of heterogeneous elastic plates based on
the Lagrangian formalism of analytical dynamics of continuum systems is applied
to investigate the normal wave dispersion in plane waveguides. The “extended”
model of a plate of Nth order interprets the boundary conditions shifted from
the faces onto the base surface as supplementary constraints for the variational
formulation of two-dimensional models and allows one to fulfil the boundary
conditions exactly. The obtained unified formulation is common with various
base functions, as well as the Legendre polynimials, as the finite element dis-
cretization of the plate across the thickness, as the Shauder base system. The
corresponding constrained spectral problem for the plate is formulated as a sta-
tionary values problem for two quadratic forms, and its solution based on the
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Golub approach is proposed. The analysis of the convergence of the locking
frequencies and the corresponding wave forms obtained from the approximate
solutions based on the higher-order theories is performed for a homogeneous
isotropic plate using the exact solution of the Rayleigh–Lamb problem as a ref-
erence one.

The solution for the problem of the dispersion of normal waves is obtained for
the functionally graded waveguide with two constituents, the metal and the ce-
ramics, with both symmetric and asymmetric power-law variation of the ceramic
volume fraction across the thickness for several power law indices. The locking
phase frequencies are computed. It is shown that for power graded plates the
dimensionless locking frequencies drop as the power law index rises and the
high-modulus ceramic constituent prevails, and their convergence for lowest fre-
quencies is observed for P, . . . , 10, i.e. for “skinned” power-graded structures with
thin ceramic-rich layers near the faces.

The proposed approach could be used for the analysis of the impact of various
uncertainties of functionally graded material structures on the dispersion prop-
erties of waveguides as well as to solve inverse coefficient problems of stationary
dynamics being a base for non-destructive testing methods.
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