PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Efficient solidification of Pb2+ by activated tungsten tailings and cement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The preparation of cementing admixture from tailings and co-solidification of Pb2+ with cement is a green way to realize the resource utilization of tailings and treatment of the lead-containing wastewater. In this paper, the tungsten tailings were activated in different ways, and the mechanical properties of the tungsten tailings-cement solidified body with different activation systems and the solidification behavior of Pb2+ were studied. The phase and microstructure of the hydrated product were characterized by XRD, FT-IR, SEM and EDS. The results showed that the curing effect of Pb2+ was obviously different of different activation systems, and the curing effect of the solidified body of the ternary composite activation system (TCAS) was the best, second only to the pure cement system (PCS). Different activation methods have a significant impact on the mechanical properties of the solidified body. With the increase of the Pb2+ content, the compressive strength of the solidified body gradually decreased, the Pb2+ leaching concentration gradually increased; with the extension of the curing age, the compressive strength gradually increased, and the Pb2+ leaching concentration gradually decreased. In particular, the compressive strength of the 28d solidified body was 31.43 MPa and the leaching concentration of Pb2+ was only 0.38 mg/L when the Pb2+ content was 5%. The phase, microstructure and EDS results of the hydration products showed that Pb2+ was mainly solidified in the C-S-H gel.
Słowa kluczowe
Rocznik
Strony
art. no. 162618
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
  • School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
  • Jiangxi Key Laboratory of Mining Engineering, Ganzhou, 341000, China
autor
  • School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
autor
  • School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
autor
  • School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
autor
  • School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
Bibliografia
  • ALFONSO, P., TOMASA, O., GARCIA-VALLES, M., TARRAGO, M., MARTINEZ, S., ESTEVES, H., 2018. Potential of tungsten tailings as glass raw materials. Mater. Lett. 228, 456-458.
  • CHEN, Q.Y., TYRER, M., HILLS, C.D., YANG, X.M., Carey, P., 2009. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Manage. 29(1), 390-403.
  • CHEN, D.N., LI, D.G., Z.J., XIAO, FANG, Z., ZOU, X.G., CHEN, P., CHEN, T.S., LV, W.Y., LIU, H.J., LIU, G.G., 2021. Removal of lead ions by two Fe-Mn oxide substrate adsorbents. Sci. Total Environ. 773, 145670.
  • CHOI, Y.W., KIM, Y.J., CHOI, O., LEE, K.M., LACHEMI, M., 2009. Utilization of tailings from Tungsten mine waste as a substitution material for cement. Constr. Build. Mater. 23(7), 2481-2486.
  • CONNER, J.R., HOEFFNER, S.L., 1998. A critical review of stabilization/solidification technology. Crit. Rev. Env. Sci. Tec. 28(4), 397-462.
  • EI-ESWED, B.I., ALDAGAG, O.M., KHALILI, F.I., 2017. Efficiency and mechanism of stabilization/solidification of Pb(II) ,Cd(II) ,Cu(II) ,Th(IV) and U(VI) in metakaolin based geopolymers. Appl. Clay Sci.140, 148-156.
  • EL-ESWED, B.I., 2020. Chemical evaluation of immobilization of wastes containing Pb, Cd, Cu and Zn in alkali-activated materials: A critical review. J. Environ. Chem. Eng. 8(5), 104194.
  • FENG, C.Y., ZENG, Z.L., ZHANG, D.Q., QU, W.J., DU, A.D., LI, D.X., SHE, H.Q., 2011. SHRIMP zircon U–Pb and molybdenite Re–Os isotopic dating of the tungsten deposits in the Tianmenshan–Hongtaoling W–Sn orefield, southern Jiangxi Province, China, and geological implications. Ore Geol. Rev. 43(1), 8-25.
  • FENG, Y., QI, J.Y., CHI, L.Y., WANG, D., WANG, Z.Y., LI, K., LI, X., 2013. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor. J. Hazard. Mater. 246–247, 61-69.
  • GLASSER, F. P., 1997. Fundamental aspects of cement solidification and stabilization. J. Hazard. Mater. 52(2-3):151-170.
  • HALIM, C.E., AMAL, R., BEYDOUN, D., SCOTT, J.A., LOW, G., 2004. Implications of the structure of cementitious wastes containing Pb(II), Cd(II), As(V), and Cr(VI) on the leaching of metals. Cement Concrete Res. 34(7), 1093-1102.
  • HU, S.X., ZHONG, L.L., YANG, X.J., BAI, H.Y., REN, B., ZHAO, Y.L., ZHANG, W., JU, X., WEN, H.R., MAO, S.R., TAO, R., LI, C.,2020. Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals. Constr. Build. Mater. 254, 119273.
  • HUANG, J.L., LUO, Z.B., KHAN, M.B.E., 2020. Impact of aggregate type and size and mineral admixtures on the properties of pervious concrete: An experimental investigation. Constr. Build. Mater. 265, 120759.
  • HUANG, Z.Q., ZHANG, S.Y., WANG, H.L., LIU, R.K., CHENG, C., SHUAI, S.Y., HU, Y.J., ZENG, Y.H., YU, X.Y., HE, G.C., FU, W., BUROV, V.E., POILOV, V.Z., 2022. Recovery of wolframite from tungsten mine tailings by the combination of shaking table and flotation with a novel “crab” structure sebacoyl hydroxamic acid. J. Environ. Manage. 317, 115372.
  • JI, Z.H., PEI, Y.S., 2019. Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: A review. J. Environ. Manage. 231, 256-267.
  • JI, Z.H., PEI, Y.S., 2020. Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO43- and Cr2O72-) in wastes-based geopolymer. J. Hazard. Mater. 384, 121290.
  • JI, G.X., PENG, X.Q., WANG, S.P., HU, C., RAN, P., SUN, K.K., ZENG, L., 2021. Influence of magnesium slag as a mineral admixture on the performance of concrete. Constr. Build. Mater. 295, 123619.
  • KATSOU, E., MALAMIS, S., HARALAMBOUS, K., 2011. Pre-treatment of industrial wastewater polluted with lead using adsorbents and ultrafiltration or microfiltration membranes. Water Environ. Res. 83(4), 298-312.
  • KHAN, A.H., SHANG, J.Q., ALAM, R., 2012. Ultrasound-assisted extraction for total sulphur measurement in mine tailings. J. Hazard. Mater. 235-236, 376-383.
  • KHARRAZ, J.A., KHANZADA, N.K., FARID, M.U., KIM, J., JEONG, S., AN, A.K., 2022. Membrane distillation bioreactor (MDBR) for wastewater treatment, water reuse, and resource recovery: A review. J. Water Process Eng. 47, 102687.
  • KOROGLU, L., KAMAN, D.O., AYAS, E., 2021. Optimizing the particle size distribution of heat-treated boron derivative wastes in cement mortars as portland cement replacements. Constr. Build. Mater. 282, 122640.
  • KUMAR, M., NANDI, M., PAKSHIRAJAN, K., 2021. Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation. J. Environ. Manage. 278, 111555.
  • LEE, D., 2007. Formation of leadhillite and calcium lead silicate hydrate (C–Pb–S–H) in the solidification/stabilization of lead contaminants. Chemosphere. 66(9), 1727-1733.
  • LEE, P.K., KANG, M.J., JO, H.Y., CHOI, S.H., 2012. Sequential extraction and leaching characteristics of heavy metals in abandoned tungsten mine tailings sediments. Environ. Earth Sci, 66, 1909-1923.
  • LEE, J. K., SHANG, J.Q., JEONG, S., 2014. Thermo-mechanical properties and microfabric of fly ash-stabilized gold tailings. J. Hazard. Mater. 276, 323-331.
  • LIU, C.P., LUO, C.L., GAO, Y., LI, F.B., LIN, L.W., WU, C.A., LI, X.D., 2010. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environ. Pollut. 158(3), 820-826.
  • LIU, X.M., SONG, Q.J., TANG, Y., LI, W.L., XU, J.M., WU, J.J., WANG, F., BROOKES, P.C., 2013. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci. Total Environ. 463-464, 530-540.
  • MOLLAH, M.Y.A., YU, W.H., SCHENNACH, R., COCKE, D.L., 2000. A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cement Concrete Res. 30(2), 267-273.
  • MONTEIRO, P.J.M., MILLER, S.A., HORVATH, A., 2017. Towards sustainable concrete. Nat. Mater. 16(7), 698–699.
  • OLIVEIRA DE SOUZA, P., SINHOR, V., CRIZEL, M.G., PIRES, N., FILHO, P.J.S., PICOLOTO, R.S., DUARTE, F.A., PEREIRA, C.M.P., MESKO, M.F., 2022. Bioremediation of chromium and lead in wastewater from chemistry laboratories promotes by cyanobacteria. Bioresource Technology Reports, 19, 101161.
  • PENG, J.T., ZHOU, M.F., HU, R.Z., SHEN, N.P., YUAN, S.D., BI, X.W., DU, A.D., QU, W.J., 2006. Precise molybdenite Re–Os and mica Ar–Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Miner. Deposita. 41(7), 661-669.
  • PENG, K., YANG, H.M., OUYANG, J., 2015. Tungsten tailing powders activated for use as cementitious material. Powder Technol. 286, 678-683,
  • PETRUNIC, B.M., AL, T.A., WEAVER L., 2006. A transmission electron microscopy analysis of secondary minerals formed in tungsten-mine tailings with an emphasis on arsenopyrite oxidation. Appl. Geochem. 21(8), 1259-1273.
  • PRANUDTA, A., CHANTHAPON, N., KIDKHUNTHOD, P., EL-MOSELHY, M.M., NGUYEN, T.T., PADUNGTHON, S., 2021. Selective removal of Pb from lead-acid battery wastewater using hybrid gel cation exchanger loaded with hydrated iron oxide nanoparticles: Fabrication, characterization, and pilot-scale validation. J. Environ. Chem. Eng. 9(5),106282.
  • RAVISHANKAR, H., MOAZZEM, S., JEGATHEESAN, V.,2019. Performance evaluation of A2O MBR system with graphene oxide (GO) blended polysulfone (PSf) composite membrane for treatment of high strength synthetic wastewater containing lead. Chemosphere. 234, 148-161.
  • SIDDIQUE R., 2010. Utilization of municipal solid waste (MSW) ash in cement and mortar. Resour. Conserv. Recy. 54(12), 1037-1047.
  • TIAN, Y.X., THEMELIS, N.J., ZHAO, D.D., BOURTSALAS, A.C.T., KAWASHIMA, S., 2022. Stabilization of Waste-to-Energy (WTE) fly ash for disposal in landfills or use as cement substitute. Waste Manage. 150, 227-243.
  • WANG, X., QIN, W.Q., JIAO, F., DONG, L.Y., GUO, J.G., ZHANG, J., YANG, C.R., 2022. Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China. T. Nonferr. Metal. Soc. 32, (7), 2318-2338.
  • WHITWORTH, A.J., VAUGHAN, J., SOUTHAM, G., ENT, A., NKRUMAH, P.N., MA, X.D., PARBHAKAR-FOX, A., 2022. Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes. Miner. Eng. 182, 107537.
  • WU, Z.X., JIANG, Y.M., GUO, W.X., JIN, J.X., WU, M.J., SHEN, D.S., LONG, Y.Y., 2021. The long-term performance of concrete amended with municipal sewage sludge incineration ash. Environ. Technol. Inno. 23, 101574.
  • YUAN, W.Q., KUANG, J.Z., YU, M.M., HUANG, Z.Y., ZOU, Z.L., ZHU, L.P., 2021. Facile preparation of MoS2@Kaolin composite by one-step hydrothermal method for efficient removal of Pb(II). J. Hazard. Mater. 405, 124261.
  • ZHU, Y., GUO, B., ZUO, W.R., JIANG, K.X., CHEN, H.H., KU, J.G., 2022. Effect of sintering temperature on structure and properties of porous ceramics from tungsten ore tailings. Mater. Chem. Phys. 287, 126315.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91ee9e56-f027-4c88-afba-6cc398494a71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.