PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikroglony i ich potencjał do wytwarzania biopaliw

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Opracowanie oraz wdrożenie na szeroką skalę czystych, efektywnych i odnawialnych technologii pozyskiwania energii staje się obecnie wyzwaniem zarówno dla naukowców, jak również priorytetem dla eksploatatorów systemów energetycznych. Jakie nowe wynalazki mogą pomóc osiągnąć ten efekt?
Czasopismo
Rocznik
Tom
Strony
20--28
Opis fizyczny
Bibliogr. 69 poz., tab.
Twórcy
  • Katedra Inżynierii Środowiska, Instytut Inżynierii i Ochrony Środowiska, Wydział Geoinżynierii, Uniwersytet Warmińsko-Mazurski w Olsztynie
  • Katedra Inżynierii Środowiska, Instytut Inżynierii i Ochrony Środowiska, Wydział Geoinżynierii, Uniwersytet Warmińsko-Mazurski w Olsztynie
  • Katedra Wodociągów i Kanalizacji, Instytut Inżynierii Środowiska i Energetyki, Wydział Budownictwa i Nauk o Środowisku, Politechnika Białostocka
Bibliografia
  • 1. Goyal, H.B., Seal, D., Saxena, R.C., Bio-fuels from thermochemical conversion of renewable resources: a review, Renewable and Sustainable Energy Reviews, 12(2), 504-517, 2008.
  • 2. Börjesson, P., Berglund, M., Environmental systems analysis of biogas systems -part I: Fuel-cycle emissions Biomass Bioenergy, 30(5), 469-485, 2006.
  • 3. Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P., Land clearing and the biofuel carbon debt, Science, 319, 1235-1238, 2008.
  • 4. Searchinger, T., Heimlich, R., Houghton, R., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., Yu, T., Use of us croplands for biofuels increases greenhouse gases through emissions from land-use change, Science, 319, 1238-1240, 2008.
  • 5. Johansson, D., Azar, C., A Scenario based analysis of land competition between food and bioenergy production in the us, Climatic Change, 82(3), 267-291, 2007.
  • 6. Smith, V., Sturm, B., deNoyelles, F., Billings, S., The ecology of algal biodiesel production, Trends Ecol. Evol., 25(5), 301-309, 2010.
  • 7. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P., A look back at the us department of energy’s aquatic species program-biodiesel from algae. Prepared for the U.S. Department of Energy by The National Renewable Energy Laboratory: Golden, Colorado, 1998.
  • 8. Mandal, S., Mallick, N., Microalga Scenedesmus obliquus as a potential source for biodiesel production, Appl. Microbiol. Biotechnol., 84, 281-291, 2009.
  • 9. Mata, T.M., Martins, A.A., Caetano, N.S., Microalgae for biodiesel production and other applications: a review, Renew. Sust. Energ. Rev, 14, 217-232, 2010.
  • 10. Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R., Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102, 100-112, 2009.
  • 11. Schenk, P.M., Skye, R., Thomas-Hall, Stephens, E., Marx, U.C., Mussgnug, J.H., Second generation biofuels: high-efficiency microalgae for biodiesel production, Bioenergy Res, 1, 20-43, 2008.
  • 12. Chojnacka, K., Marquez-Rocha, F.J., Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae, Biotechnology, 3, 21-34, 2004.
  • 13. Huang, G.H., Chen, F., Wei, D., Zhang, X.W., Chen, G., Biodiesel production by microalgal biotechnology, Appl. Energ, 87, 38-46, 2010.
  • 14. Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y., Oh, H.M., Selection of microalgae for lipid production under high levels carbon dioxide, Bioresource Technology, 101, 71-74, 2010.
  • 15. Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S., Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor, Bioresource Technology, 99, 3389-3396, 2008.
  • 16. Han, S.J., Bang, Y., Yoo, J., Kang, K.H., Song, J.H., Seo, J.G., Song, I.K., Hydrogen production by steam reforming of ethanol over mesoporous NieAl2O3eZrO2 aerogel catalyst, International journal of hydrogen energy, 38, 15119-15127, 2013.
  • 17. Ryan, D., Jennifer, M., Christopher, K., Nicholas, G., Eric, T., Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion, NREL/TP-5100-64772, 2016.
  • 18. Zhang, X., Microalgae removal of CO2 from flue gas, IEA Clean Coal Centre, 2015.
  • 19. De Morais, M.G., Costa, J.A.V., Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169-73, 2007.
  • 20. De Swaaf, M.E. Docosahexaenoic acid production by the marine alga Crypthecodinium cohnii. Doctoral thesis, Delft University, Delft University Press, The Nederlands, 2003.
  • 21. Xu, H., Miao, X.L., Wu, Q.Y., High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters, J. Biotechnol., 126, 499-507, 2006.
  • 22. Kuei-Ling, Y. and Jo-Shu, C., Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31, Bioresource Technology, 105, 120-127, 2012.
  • 23. Liang, Y., Sarkany, N., Cui, Y., Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions, Biotechnol. Lett., 31(7), 1043-1049, 2009.
  • 24. Chen, Y.H., Walker, T.H., Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol, Biotechnol Lett, 33, 1973-1983, 2011.
  • 25. Xiong, W., Li, X., Xiang, J., Wu, Q., High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production, Applied Microbiology and Biotechnology, 78, 29-36, 2008.
  • 26. Qu, L., Ji, X.J., Ren, L.J., Nie, Z.K., Feng, Y., Wu, W.J., Ouyang, P.K., Huang, H., Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient, Lett. Appl. Microbiol., 52, 22-27, 2010.
  • 27. Bailey, R.B., Dimasi, D., Hansen, J.M., Mirrasoul, P.J., Ruecker, C.M., Veeder, G.T., Kaneko, T., Barclay, W.R., Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes in fermentors, US Patent 6607900, 2003.
  • 28. Zhang, Y., Su, H., Zhong, Y., Zhang, C., Shen, Z., Sang, W., Yan, G., Zhou, X., The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products, Water Res., 46, 5509-5516, 2012.
  • 29. Marudhupandia, T., Sathishkumara, R., Kumara, T.T.A., Heterotrophic cultivation of Nannochloropsis salina for enhancing biomass and lipid production, Biotechnology Reports, 10, 8-16, 2016.
  • 30. Bhatnagar, A., Chinnasamy, S., Singh, M., Das, K. C., Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters, Applied Energy, 88, 3425-3431, 2011.
  • 31. Yu, H.F., Jia, S.R., Dai, Y.J., Growth characteristics of the cyanobacterium Nostocflagelli for mein photoautotrophic, mixotrophic and heterotrophic cultivation, Journal of Applied Phycology, 21, 127-133, 2009.
  • 32. Illman, A.M., Scragg, A.H., Shales, S.W., Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol., 27, 631-635, 2000.
  • 33. Cheng, Y., Zhou, W.G., Gao, C.F., Lan, K., Gao, Y., Wu, Q.Y., Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides, J. Chem. Technol. Biotechnol., 84, 777-781, 2009.
  • 34. Anand, P., Saxena, R.K., A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii, New Biotechnol., 29(2), 199-205, 2011.
  • 35. Jiang, Y., Yoshida, T., Quigg, A., Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae, Plant Physiology and Biochemistry, 54, 70-77, 2012.
  • 36. Ho, S.H., Chen, C.Y., Chang, J.S., Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N, Bioresour Technol., 113, 244-52, 2012.
  • 37. Ogbonna, J.C., Ichige, E., Tanaka, H., Regulating the ratio of photoautotrophic to heterotrophic metabolic activities in photoheterotrophic culture of Euglena gracilis and its application to alpha-tocopherol production, Biotechnol. Lett., 24, 953-958, 2002.
  • 38. Dasgupta, C.N., Gilbert, J.J., Lindblad, P., Heidorn, T., Borgvang, S.A., Skjanes, K., Das, D., Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production, International Journal of Hydrogen Energy, 35(19), 10218-10238, 2010.
  • 39. Miyake, J., Miyake, M., Asada, Y., Biotechnological hydrogen production: research for efficient light energy conversion, Journal of Biotechnology, 70, 89-101, 1999.
  • 40. Ni, F.M., Leung, D.Y.C., Leung, M.K.H., Sumathy, K., An overview of hydrogen production from biomass, Fuel Processing Technology, 87, 461-472, 2006.
  • 41. Kosourov, S., Patrusheva, E., Ghirardi, M.L., Seibert, M., Tsygankov, A., A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions, Journal of Biotechnology, 128, 776-787, 2007.
  • 42. Ogbonna, J.C., Tanaka, H., Night Biomass Loss and Changes in Biochemical Composition of Cells during Light/Dark Cyclic Culture of Chlorella pyrenoidosa, Journal of Fermentation and Bioengineering, 82(6), 558-564, 1996.
  • 43. Tamburic, B., Zemichael, F.W., Maitland, G.C., Hellgardt, K., Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii, International Journal of Hydrogen Energy, 1-5, 2010.
  • 44. Oncel, S., Vardar-Sukan, F., Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime, International Journal of Hydrogen Energy, 34(18), 7592-7602, 2009.
  • 45. Laurinavichene, T.V., Tolstygina, I.V., Galiulina, R.R., Ghirardi, M.L., Seibert, M., Tsygankov, A.A., Dilution methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction, International Journal of Hydrogen Energy, 27(11-12), 1245-1249, 2002.
  • 46. Winkler, M., Hemschemeier, A., Gotor, C., Melis, A., Happe, T., [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation, International Journal of Hydrogen Energy, 27, 1431-1439, 2002.
  • 47. Ji, C.F., Legrand, J., Pruvost, J., Chen, Z.A., Zhang, W., Characterization of hydrogen production by Platymonas Subcordiformis in torus photobioreactor, International Journal of Hydrogen Energy, 35(13), 7200-7205, 2010.
  • 48. Vijayaraghavan, K., Karthik, K., Nalini, S.P.K., Hydrogen production by Chlamydomonas reinhardtii under light driven sulfur deprived condition, International Journal of Hydrogen Energy, 34, 7964-7970, 2009.
  • 49. Skjanes, K., Knutsen, G., Kӓllqvist, T., Lindblad, P., H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design, International Journal of Hydrogen Energy, 33, 511-521, 2008.
  • 50. Faraloni, C., Ena, A., Pintucci, C, Tortillo, G., Enhanced hydrogen production by means of sulfur-deprived Chlamydomonas reinhardtii cultures grown in pretreated olive mill wastewater, International Journal of Hydrogen Energy, 36, 5920-5931, 2011.
  • 51. Amutha, K.B., Murugesan, A.G., Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment, Bioresource Technology, 102(1), 194-199, 2011.
  • 52. Liu, C.H., Chang, C.Y., Liao, Q., Zhu, X., Chang, J.S., Photoheterotrophic growth of Chlorella vulgaris ESP6 on organic acids from dark hydrogen fermentation effluents, Bioresource Technology, 145, 331-336, 2013.
  • 53. Song, W., Rashid, N., Choi, W., Lee, K., Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis, Bioresource Technology, 102(18), 8676-8681, 2011.
  • 54. Zhang, L., He, M., Liu, J., The enhancement mechanism of hydrogen photoproduction in Chlorella protothecoides under nitrogen limitation and sulfur deprivation, International Journal of Hydrogen Energy, 39(17), 8969-8976, 2014.
  • 55. Chader, S., Hacene, H., Agathos, S.N., Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara, International Journal of Hydrogen Energy, 34, 4941-4946, 2009.
  • 56. Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F., Tsygankov, A., Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake de(cient mutant: from laboratory experiments to outdoor culture, International Journal of Hydrogen Energy, 27, 1271-1281, 2002.
  • 57. Lin, H.D., Liu, B.H., Kuo, T.T., Tsai, H.C., Feng, T.F., Huang, C.C., Chien, L.F., Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT, Bioresource Technology, 143, 154-162, 2013.
  • 58. Guan, Y., Deng, M., Yu, X., Zhang, W., Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis, Biochemical Engineering Journal, 19(1), 69-73, 2004.
  • 59. Guo, Z., Chen, Z., Lu, H., Fu, Y., Yu, X., Zhang, W., Sustained hydrogen photoproduction by marine green algae platymonas subcordiformis integrated with in situ hydrogen consumption by an alkaline fuel cell system, Journal of Biotechnology, 136, 558-576, 2008.
  • 60. Ji, C.F., Yu, X.J., Chen, Z.A., Xue, S., Legrand, J., Zhang, W., Effects of nutrient deprivation on biochemical compositions and photo-hydrogen production of Tetraselmis subcordiformis, International Journal of Hydrogen Energy, 36(10), 5817-5821, 2011.
  • 61. Oncel, S., Vardar Sukan, F., Effect of light intensity and the light: dark cycles on the long term hydrogen production of Chlamydomonas reinhardtii by batch cultures, Biomass and Bioenergy, 35(3), 1066-1074, 2011.
  • 62. Sun, J., Yuan, X., Shi, X., Chu, C., Guo, R., Kong, H., Fermentation of Chlorella sp. for anaerobic bio-hydrogen production: Influences of inoculum–substrate ratio, volatile fatty acids and NADH, Bioresource Technology, 102, 22, 10480-10485, 2011.
  • 63. Szewczyk, K.W., Biological hydrogen production, Advancements of Microbiology, 47(3), 241-247, 2008.
  • 64. Kim, D.H., Kim, M.S., Hydrogenases for biological hydrogen production, Bioresource Technology, 102, 8423-8431, 2011.
  • 65. Das, D., Veziroglu, T.N., Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy, 26, 13-28, 2001.
  • 66. Troshina, O., Serebryakova, L., Sheremetieva, M., Lindblad, P., Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation, International Journal of Hydrogen Energy, 27, 1283-1289, 2002.
  • 67. Aoyama, K., Lemura, I., Miyake J., Asada Y., Fermentative Metabolism to Produce Hydrogen Gas and Organic Compounds in a Cyanobacterium, Spirulina platensis, Journal of Fermentation and Bioengmeering, 83(1), 17-20, 1997.
  • 68. Khetkorn, W., Lindblad, P., Incharoensakdi, A., Enhanced biohydrogen production by the N2-fixing cyanobacterium Anabaena siamensis strain TISTR 8012, International Journal of Hydrogen Energy, 35(23), 12767-12776, 2010.
  • 69. Khetkorn, W., Lindblad, P. Incharoensakdi, A., Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012, Journal of Biological Engineering, 6(19), 1-12, 2012.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91db297d-db8f-4ab9-aa08-349332626523
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.