PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermochemical characterization of Ca4La6(SiO4)6(OH)2 a synthetic La- and OH-analogous of britholite: implication for monazite and LREE apatites stability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this contribution, monazite (LREEPO4) solubility is addressed in a chemical system involving REE-bearing hydroxylapatite, (Ca,LREE)10(PO4,SiO4)6(OH)2. For this purpose, a synthetic (La)- and (OH)-analogous of britholite, Ca4La6(SiO4)6(OH)2, was synthesised and its thermodynamic properties were measured. Formation enthalpy of –14,618.4 ± 31.0 kJ·mol–1 was obtained by high-temperature drop-solution calorimetry using a Tian-calvet twin calorimeter (Bochum, Germany) at 975 K using lead borate as solvent. Heat capacities (Cp) were measured in the 143–323 K and 341–623 K ranges with an automated Perkin-Elmer DSC 7. For calculations of solubility diagrams at 298 K, the GEMS program was used because it takes into account solid solutions. In conditions representative of those expected in nuclear waste disposal, calculations show that La-monazite is stable from pH = 4 to 9 with a minimum of solubility at pH = 7. La-bearing hydroxylapatite precipitates at pH > 7 with a nearly constant composition of 99% hydroxylapatite and 1% La-britholite. Each mineral buffers solution at extremely low lanthanum concentrations (log{La} = 10–10–10–15 mol·kg–1 for pH = 4 to 13). In terms of chemical durability, both La-monazite and La-rich apatite present low solubility, a requisite property for nuclear-waste forms.
Słowa kluczowe
Czasopismo
Rocznik
Strony
41--52
Opis fizyczny
Bibliogr. 49 poz., tab., wykr.
Twórcy
autor
  • Institut für Geologie, University of Bern, Switzerland
  • Institut für Mineralogie, WWU Münster, Germany
autor
  • Laboratoire de Géologie, CNRS UMR8538, Paris, France
autor
  • Laboratoire de Géologie, CNRS UMR8538, Paris, France
autor
  • DEN/DPC/SECR, CEA, Saclay, France
autor
  • Mineralogisches Institut, Universität-Heidelberg, Germany
autor
  • Institut für Geowissenschaften, Universität Kiel, Germany
Bibliografia
  • ARDEN K., HALDEN N., 1999: Crystallisation and alteration history of britholite in-rare-earth-element-enriched pegmatitic segregations associed with the Eden lake complex. The Canadian Mineralogist 37, 1239–1253.
  • ARDHAOUI K., COULET M.V., BEN CHERIFA A., CARPENA J., ROGEZ J., JEMAL M., 2006a: Standard enthalpy of formation of neodymium fluorbritholites. Thermochimica Acta 444(2), 190–194.
  • ARDHAOUI K., ROGEZ J., BEN CHERIFA A., JEMAL M., SATRE P., 2006b: Standard enthalpy of formation of lanthanum oxybritholites. Journal of Thermal Analysis and Calorimetry 86(2), 553–559.
  • BANFIELD J.F., EGGLETON R.A., 1989: Apatite replacement and rare-earth mobilization, fractionation, and fixation during weathering. Clays and Clay Minerals 37(2), 113–127.
  • BERMAN R.G., BROWN T.H., 1985: A Thermodynamic model for multicomponent melts, with application to the system CaO-Al2O3-SiO2 – reply. Geochimica et Cosmochimica Acta 49(2), 613–614.
  • BERTOLDI C., BENISEK A., CEMIC L., DACHS E., 2001: The heat capacity of two natural chlorite group minerals derived from differential scanning calorimetry. Physics and Chemistry of Minerals 28(5), 332–336.
  • BOATNER L.A., SALES B.C., 1988: Monazite, Amsterdam.
  • BOCK B., HUROWITZ J. A., McLENNAN S.M., HANSON G.N., 2004: Scale and timing of rare earth element redistribution in the Taconian foreland of New England. Sedimentology 51(4), 885–897.
  • BOSENICK A., GEIGER C.A., CEMIC L., 1996: Heat capacity measurements of synthetic pyrope-grossular garnets between 320 and 1000 K by differential scanning calorimetry. Geochimica et Cosmochimica Acta 60(17), 3215–3227.
  • CARPENA J., LACOUT J.L., 1997: Des apatites naturelles aux apatites synthétiques- Utilisation des apatites comme matrice de conditionnement de déchets nucléaires séparés. Actualite Chimique 2, 3–9.
  • CETINER Z.S., WOOD S.A.., GAMMONS C.H., 2005: The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150 degrees C. Chemical Geology 217(1–2), 147–169.
  • CHAIRAT C., OELKERS E.H., SCHOTT J., LARTIGUE J.E., 2006: An experimental study of the dissolution rates of Nd-britholite, an apatite-structured actinide-bearing waste storage host analogue. Journal of Nuclear Materials 354(1–3), 14–27.
  • DIAKONOV II, TAGIROV B.R., RAGNARSDOTTIR K.V., 1998: Standard thermodynamic properties and heat capacity equations for rare earth element hydroxides. I. La(OH)3(s) and Nd(OH)3(s). Comparison of thermochemical and solubility data. Radiochimica Acta 81(2), 107–116.
  • DITMARS D.A., DOUGLAS T.B., 1971: Measurement of relative enthalpy of pure alpha-Al2O3 (Nbs heat capacity and enthalpy standard reference material no 720) From 273 to 1173 K. Journal of Research of the National Bureau of Standards Section a-Physics and Chemistry A 75(5), 401–420.
  • EWING R.C., WANG L.M., 2002: Phosphates as nuclear waste forms. In: Phosphates: Geochemical, Geobiological, and Materials Importance Reviews in Mineralogy & Geochemistry, pp. 673–699.
  • FINGER F., BROSKA I., ROBERTS M.P., SCHERMAIER A., 1998: Replacement of primary monazite by apatite-allanite-peidote coronas in an amphibolite facies granite gneiss from the eastern alps. American Mineralogist 83, 248–58.
  • GABOREAU S., BEAUFORT D., VIEILLARD P., PATRIER P., BRUNETON P., 2005: Aluminum phosphate--sulfate minerals associated with proterozoic unconformity-type uranium deposits in the east alligator river uranium field, northern territories, Australia. Canadian Mineralogist 43, 813–827.
  • GABOREAU S., VIEILLARD P., 2004: Prediction of Gibbs free energies of formation of minerals of the alunite supergroup. Geochimica et Cosmochimica Acta 68(16), 3307–3316.
  • GÄMSJAGER H., MARHOLD H., KONIGSBERGER E., TSAI Y.J., KOLMER H., 1995: Solid-Solute Phase-Equilibria in Aqueous-Solutions .9. Thermodynamic Analysis of Solubility Measurements – La(OH)m(CO3)qrH2O. Zeitschrift Fur Naturforschung Section a Journal of Physical Sciences 50(1), 59–64.
  • GAUCHER E.C., BLANC P., MATRAY J.M., MICHAU N., 2004: Modeling diffusion of an alkaline plume in a clay barrier. Applied Geochemistry 19(10), 1505–1515.
  • GOFFÉ B., JANOTS E., BRUNET F., POINSSOT C., 2002: Breakdown of thorium phosphate-diphosphate (TPD), Th4(PO4)4P2O7, at 320 degrees C, 50 MPa in Ca-bearing systems, or why TPD does not occur in nature. Comptes Rendus Geoscience 334(14), 1047–1052.
  • HARLOV D.E., ANDERSSON U.B., FORSTER H.J., NYSTROM J.O., DULSKI P., BROMAN C., 2002: Apatite-monazite relations in the kiirunavaara magnetite-apatite ore, northern sweden. Chemical Geology 191, 47–72.
  • HARLOV D.E., MARSCHALL H.R., HANEL M., 2007: Fluorapatite-monazite relationships in granulite-facis metapelites, Schwarzwald, southwest Germany. Mineralogical magazine, 71(2), 223–234.
  • HOLLAND T.J.B., 1989: Dependence of Entropy On Volume For Silicate and Oxide Minerals – a Review and a Predictive Model. American Mineralogist 74(1–2), 5–13.
  • ITO J., 1968: Silicate Apatites and oxyapatites. American Mineralogist 53(5–6), 890–907.
  • JANOTS E., BRUNET F., GOFFÉ B., POINSSOT C., BURCHARD M., CEMIC L., 2007: Thermochemistry of monazite-(La) and dissakisite-(La): Implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology 154(1), 1–14.
  • JANOTS E., NEGRO F., BRUNET F., GOFFÉ B., ENGI M., BOUYBAOUENE M.L., 2006: Evolution of the REE mineralogy in HP-LT metapelites of the Sebtide complex, Rif, Morocco: Monazite stability and geochronology. Lithos 87(3–4), 214–234.
  • KAHL W.A., MARESCH W.V., 2001: Enthalpies of formation of tremolite and talc by high-temperature solution calorimetry – a consistent picture. American Mineralogist 86(11–12), 1345–1357.
  • LEV S.M., McLENNAN S.M., MEYERS W.J., HANSON G.N., 1998: A petrographic approach for evaluating trace-element mobility in a black shale. Journal of Sedimentary Research 68(5), 970–980.
  • MAIER C.G., KELLEY K.K., 1932: An equation for the representation of high temperature heat content data. American Chemical Society Journal 54, 3243–3246.
  • NAVROTSKY A., 1997: Progress and new directionsin high temperature calorimetry revisited. Physics and Chemistry of Minerals 24(3), 222–241.
  • NAVROTSKY A., RAPP R.P., SMELIK E., BURNLEY P., CIRCONE S., CHAI L., BOSE K., 1994: The behavior of H2O and CO2 in high-temperature lead borate solution calorimetry of volatile-bearing phases. American Mineralogist 79(11–12), 1099–1109.
  • NGUYEN A.M., KONIGSBERGER E., MARHOLD H., GAMSJAGER H., 1993: Solid-solute phase-equilibria in aqueous-solutions. 8. The standard gibbs energy of La2(Co3)3·8H2O. Monatshefte fur Chemie 124(10), 1011–1018.
  • NOE D.C., HUGHES J.M., MARIANO A.N., DREXLER J.W., KATO A., 1993: The crystal structure of monoclinic britholite-(Ce) and britholite-(Y). Zeitschrift fur Kristallographie 206, 233–246.
  • OBERTI R., OTTOLINI L., DELLA VENTURA G., PARODI G.C., 2001: On the symmetry and crystal chemistry of britholite: New structural and microanalytical data. American Mineralogist 86(9), 1066–1075.
  • POITRASSON F., OELKERS E., SCHOTT J., MONTEL J.M., 2004: Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21 degrees C to 300 degrees C: Implications for rare earth element mobility in crustal fluids. Geochimica et Cosmochimica Acta 68(10), 2207–2221.
  • POPA K., KONINGS R.J.M., GEISLER T., 2007: High-temperature calorimetry of (La(1–x)Ln(x))PO4 solid solutions. Journal of Chemical Thermodynamics 39(2), 236–239.
  • POPA K., SEDMIDUBSKY D., BENES O., THIRIET C., KONINGS R.J.M., 2006: The high-temperature heat capacity of LnPO4 (Ln = La, Ce, Gd) by drop calorimetry. Journal of Chemical Thermodynamics 38(7), 825–829.
  • RAI D., FELMY A.R., YUI M., 2003: Thermodynamic model for the solubility of NdPO4(c) in the aqueous Na+-H+-H2PO4–-HPO4 2–-OH–-Cl–-H2O system. Journal of Radioanalytical and Nuclear Chemistry 256(1), 37–43.
  • RASMUSSEN B., 1996: Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones: A major sink for oceanic phosphorus. American Journal of Science 296(6), 601–632.
  • RISBUD A.S., HELEAN K.B., WILDING M.C., LU P., NAVROTSKY A., 2001: Enthalpies of formation of lanthanide oxyapatite phases. Journal of Materials Research 16(10), 2780–2783.
  • ROBIE R.A., HEMINGWAY B.S., 1995: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. Government Printing Office, Washington, 461p.
  • ROBIE R.A., HEMINGWAY B.S., FISHER J.R., 1979: Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. U.S. Government Printing Office Washington, 454 p.
  • SPEAR F.S., PYLE J.M., 2002: Apatite, monazite, and xenotime in metamorphic rocks. In: Phosphates: Geochemical, Geobiological, and Materials Importance Reviews in Mineralogy & Geochemistry, pp. 293–335.
  • TAUNTON A.E., WELCH S.A., BANFIELD J.F., 2000: Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation. Chemical Geology 169, 371–82.
  • THIRIET C., KONINGS R.J.M., JAVORSKY P., MAGNANI N., WASTIN F., 2005: The low temperature heat capacity of LaPO4 and GdPO4, the thermodynamic functions of the monazite-type LnPO4 series. Journal of Chemical Thermodynamics 37(2), 131.
  • USHAKOV S.V., HELEAN K.B., NAVROTSKY A., BOATNER L.A., 2001: Thermochemistry of rare-earth orthophosphates. Journal of Materials Research 16(9), 2623–2633.
  • USHAKOV S.V., NAVROTSKY A., FARMER J.M., BOATNER L.A., 2004: Thermochemistry of the alkali rare-earth double phosphates, A3RE(PO4)2. Journal of Materials Research 19(7), 2165–2175.
  • WEBER W.J., 1981: Radiation-damage in a rare-earth apatite structure. American Ceramic Society Bulletin 60(9), 934–934.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91cf0320-92ff-46e6-8ef1-5f354137f6a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.