PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration equations of the coupled torsional, longitudinal, and lateral vibrations of the propeller shaft at the ship stern

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A propeller shaft generally experiences three linear forces and three moments, the most important of which are thrust, torque, and lateral forces (horizontal and vertical). Thus, we consider 4DOFs (degrees of freedom) of propeller shaft vibrations. This paper is presented to obtain the vibration equations of the various coupled vibrations of the propeller shaft at the stern of a ship (including coupled torsional-axial, torsional-lateral, axial-lateral, torsional-axial, and lateral vibrations). We focused on the added hydrodynamic forces (added mass and added damping forces) due to the location of the propeller behind the ship. In this regard, the 4DOFs of the coupled vibration (torsional-longitudinal and lateral vibrations in the horizontal and vertical directions) equations of shaft and propeller systems located behind a ship were extracted with and without added mass and damping forces. Also, the effect of mass eccentricity was considered on vibrations occurring at the rear of the ship.
Rocznik
Strony
121--129
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • mirkabir University of Technology, Department of Maritime Engineering, Tehran, Iran
  • mirkabir University of Technology, Department of Maritime Engineering, Tehran, Iran
  • Imam Khomeini Marine University, Department of Mechanical Engineering, Nowshahr, Iran
Bibliografia
  • 1. Abbas, N., Kornev, N., Shevchuk, I. & Anschau, P. (2015) CFD prediction of unsteady forces on marine propellers caused by the wake nonuniformity and nonstationarity. Ocean Engineering 104, pp. 659–672.
  • 2. Batrak, Y. (2010) Torsional Vibration Calculation Issues with Propulsion Systems. 1st IMarEST Ship Noise and Vibration Conference.
  • 3. Baz, A., Gilheany, J. & Steimel, P. (1990) Active vibration control of propeller shafts. Journal of Sound and Vibration 136, 3, pp. 361–372.
  • 4. Bodger, L., Helma, S. & Sasaki, N. (2016) Vibration control by propeller design. Ocean Engineering 120, pp. 175– 181.
  • 5. Broglia, R., Dubbioso, G., Durante, D. & Di Mascio, A. (2015) Turning ability analysis of a fully appended twin screw vessel by CFD. Part I: Single rudder configuration. Ocean Engineering 105, pp. 275–286.
  • 6. Carlton, J. (2012) Marine Propellers and Propulsion. Butterworth-Heinemann.
  • 7. Chen, J.-H. & Shih, Y.-S. (2007) Basic design of a series propeller with vibration consideration by genetic algorithm. Journal of Marine Science and Technology 12(3), pp. 119– 129.
  • 8. Dubbioso, G., Durante, D., Di Mascio, A. & Broglia, R. (2016) Turning ability analysis of a fully appended twin screw vessel by CFD. Part II : Single vs. twin rudder configuration. Ocean Engineering 117, pp. 259–271.
  • 9. Firouzi, J., Ghassemi, H., Akbari Vakilabadi, K. & Khalilnezhad, H. (2017) The effect of damping coefficients on the torsional vibration of the damped multi-branch gears system. Journal of Applied Mathematics and Computational Mechanics 16 (4), pp. 5–16.
  • 10. Ghassemi, H. (2018) Practical approach to calculating the hydrodynamic oscillating loads of a ship propeller under non-uniform wake field. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 56 (128), pp. 9–20.
  • 11. Ghose, J.P. & Gokarn, R.P. (2004) Basic ship propulsion. Allied publishers.
  • 12. Han, H.S., Lee, K.H. & Park, S.H. (2015) Estimate of the fatigue life of the propulsion shaft from torsional vibration measurement and the linear damage summation law in ships. Ocean Engineering 107, pp. 212–221.
  • 13. Han, H.S., Lee, K.H. & Park, S.H. (2016) Parametric study to identify the cause of high torsional vibration of the propulsion shaft in the ship. Engineering Failure Analysis 59, pp. 334–346.
  • 14. He, X.D., Hong, Y. & Wang, R.G. (2012) Hydroelastic optimisation of a composite marine propeller in a non-uniform wake. Ocean Engineering 39, pp. 14–23.
  • 15. Huang, Q., Yan, X., Wang, Y., Zhang, C. & Wang, Z. (2017) Numerical modeling and experimental analysis on coupled torsional-longitudinal vibrations of a ship’s propeller shaft. Ocean Engineering 136, pp. 272–282.
  • 16. Huang, Q., Zhang, C., Jin, Y., Yuan, Ch. & Yan, X. (2015) Vibration analysis of marine propulsion shafting by the coupled finite element method. Journal of Vibroengineering 17, 7, pp. 3392–3403.
  • 17. Kinns, R., Thompson, I., Kessissoglou, N. & Tso, Y. (2007) Hull vibratory forces transmitted via the fluid and the shaft from a submarine propeller. Ships and Offshore Structures 2 (2), pp. 183–189.
  • 18. Li, J., Qu, Y., Chen, Y. & Hua, H. (2018) Investigation of added mass and damping coefficients of underwater rotating propeller using a frequency-domain panel method. Journal of Sound and Vibration 432, pp. 602–620.
  • 19. Liang, X. & Zhao, H. (2014) Machinery vibrations induced by propeller of the ship Nomenclature. 21st International Congress on Sound and Vibration (ICSV21), Beijing, China, pp. 1–4.
  • 20. Lin, T.R., Pan, J., O’Shea, P.J. & Mechefske, C.K. (2009) A study of vibration and vibration control of ship structures. Marine Structures 22, 4, pp. 730–743.
  • 21. Magazinović, G. (2009) Shafting Vibration Primer. [Online] Available at: https://bib.irb.hr/datoteka/566518.Shafting_Vibration_Primer.pdf [Accessed: October 10, 2019].
  • 22. Mahmoodi, K., Ghassemi, H. & Nowruzi, H. (2018) Obtaining mathematical functions of the propeller thrust and torque coefficients fluctuations at non-uniform wake flow including geometry effects. Mechanics & Industry 19, 205.
  • 23. Murawski, L. (2004) Axial vibrations of a propulsion system taking into account the couplings and the boundary conditions. Journal of Marine Science and Technology 9, pp. 171–181.
  • 24. Murawski, L. & Charchalis, A. (2014) Simplified method of torsional vibration calculation of marine power transmission system. Marine Structures 39, pp. 335–349.
  • 25. Oguamanam, D.C.D. (2003) Free vibration of beams with finite mass rigid tip load and exural – torsional coupling. International Journal of Mechanical Sciences 45, 6–7, pp. 963–979.
  • 26. Parsons, M.G. (1983) Mode Coupling in Torsional and Longitudinal Shafting Vibrations. The Marine Technology 20, 3, pp. 257–271.
  • 27. Rao, T.V.H. (2005) A Diagnostic Approach to the Vibration Measurements and Theoretical Analysis of the a Dredger Propulsor System. Journal of The Institution of Engineers, pp. 17–23.
  • 28. Sapountzakis, E.J. & Tsipiras, V.J. (2010) Warping shear stresses in nonlinear nonuniform torsional vibrations of bars by BEM. Engineering Structures 32, 3, pp. 741–752.
  • 29. Sestan, A., Vladimir, N., Vulic, N. & Ljubenkov, B. (2012) A study into resonant phenomena in the catamaran ferry propulsion system. Transactions of FAMENA 36 (1), pp. 35–44.
  • 30. Shi, L., Xue, D. & Song, X. (2010) Research on shafting alignment considering ship hull deformations. Marine Structures 23, 1, pp. 103–114.
  • 31. Tian, Z., Yan, X.P., Zhang, C., Xiong, Y.-P. & Yang, P. (2016) Vibration characteristics analysis on ship propulsion system taking hull deformations into account. Technical gazette 23, 3, pp. 783–790.
  • 32. Wei, Y. & Wang, Y. (2013) Unsteady hydrodynamics of blade forces and acoustic responses of a model scaled submarine excited by propeller’s thrust and side-forces. Journal of Sound and Vibration 332, 8, pp. 2038–2056.
  • 33. Yari, E. & Ghassemi, H. (2016) Free and Forced Vibrations of a Shaft and Propeller Using the Couple of Finite Volume Method, Boundary Element Method and Finite Element Method. Ravish/hā-yi ̒adadī dar Muhandisī 34(2), pp. 13–36 (in Persian).
  • 34. Zhang, G., Zhao, Y., Li, T. & Zhu, X. (2014) Propeller Excitation of Longitudinal Vibration Characteristics of Marine Propulsion Shafting System. Shock and Vibration 413592.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91c92acd-646b-43d5-b920-a0619c1855c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.