PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relationship Between the Sound Transmission Through the Finite Double-Panel Structure with a Cylindrical Shell Array and the Vibro-Acoustic Characteristics of its Constituents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sound insulation of the finite double-panel structure (DPS) inserted with a cylindrical shell array is investigated by varying the sound incidence direction to improve its applicability. The effects of the vibro-acoustic characteristics of its constituents on the sound transmission loss (STL) are estimated in one-third octave bands from 20 Hz to 5 kHz for different incidence conditions. It shows that the first acoustic mode in the direction parallel to two panels (longitudinal modes) produces both the sudden variation of sound insulation with frequency and a large dependency on the incidence angle. Mineral wools are placed on two boundaries perpendicular to the panels, and the sound insulation is explored for different thicknesses of the porous materials. An absorbent layer with a certain thickness (more than 30 mm in our work) sufficiently eliminates the longitudinal mode, resulting in the improvement in the sound insulation by more than 15 dB and the decrease of its large variation with incidence direction. STLs with varying shell thicknesses are also assessed. It shows that the natural vibrations of the thin shells can give an enhancement in sound insulation by more than 10 dB in the frequency range of 1600–3700 Hz, corresponding to constructive interference.
Rocznik
Strony
381--388
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Acoustics, Department of Physics, Kim Il Sung University Pyongyang, Democratic People’s Republic of Korea
  • Institute of Acoustics, Department of Physics, Kim Il Sung University Pyongyang, Democratic People’s Republic of Korea
Bibliografia
  • 1. Allard J.F., Atalla N. (2009), Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, 2nd ed., John Wiley & Sons, doi: 10.1002/9780470747339.
  • 2. Bruneau M. (2006), Fundamentals of Acoustics, ISTE Ltd Press, London.
  • 3. Chalmers L., Elford D.P., Kusmartsev F.V., Swallowe G.M. (2009), Acoustic band gap formation in two-dimensional locally resonant sonic crystals comprised of Helmholtz resonators, International Journal of Modern Physics B, 24(20n21): 4231-4243, doi: 10.1142/S0217979209063390.
  • 4. Chen Y.-Y., Ye Z. (2001), Acoustic attenuation by two-dimensional arrays of rigid cylinders, Physical Re view Letters, 87(18): 184301, doi: 10.1103/PhysRevLett.87.184301.
  • 5. Chong Y.B. (2012), Sonic crystal noise barriers, Ph.D. Thesis, The Open University, Milton Keynes, UK, doi: 10.21954/ou.ro.0000add6.
  • 6. Elford D.P., Chalmers L., Kusmartsev F.V., Swallowe G.M. (2011), Matryoshka locally resonant sonic crystal, The Journal of the Acoustical Society of America, 130(5): 2746-2755, doi: 10.1121/1.3643818.
  • 7. Fuster-Garcia E., Romero-García V., Sánchez-Pérez J.V., García-Raffi L.M. (2007), Targeted band gap creation using mixed sonic crystal arrays including resonators and rigid scatterers, Applied Physics Letter, 90(24): 244104, doi: 10.1063/1.2748853.
  • 8. Gulia P., Gupta A. (2018), Enhancing the sound transmission loss through acoustic double panel using sonic crystal and porous material, The Journal of the Acoustical Society of America, 144(3): 1435-1442, doi: 10.1121/1.5054296.
  • 9. Gulia P., Gupta A. (2019), Sound attenuation in triple panel using locally resonant sonic crystal and porous material, Applied Acoustics, 156: 113-119, doi: 10.1016/j.apacoust.2019.07.012.
  • 10. Kim M.-J. (2019a), Improving sound transmission through triple-panel structure using porous material and sonic crystal, Archives of Acoustics, 44(3): 533-541, doi: 10.24425/aoa.2019.129268.
  • 11. Kim M.-J. (2019b), Numerical study for increasement of low frequency sound insulation of double panel structure using sonic crystals with distributed Helmholtz resonators, International Journal of Modern Physics B, 33(14): 1950138, doi: 10.1142/S0217979219501388.
  • 12. Kim M.-J., Rim C.-G., Won K.-S. (2021), Broadening low-frequency band gap of double-panel structure using locally resonant sonic crystal comprised of slot-type Helmholtz resonators, Archives of Acoustics, 46(2): 335-340, doi: 10.24425/aoa.2021.136587.
  • 13. Krynkin A., Umnova O., Yung Boon Chong A., Taherzadeh S., Attenborough K. (2010), Predictions and measurements of sound transmission through a periodic array of elastic shells in air, The Journal of the Acoustical Society of America, 128(6): 3496-3506, doi: 10.1121/1.3506342.
  • 14. Krynkin A., Umnova O., Sánchez-Pérez J.V., Yung Boon Chong A., Taherzadeh S., Attenborough K. (2011), Acoustic insertion loss due to two dimensional periodic arrays of circular cylinders parallel to a nearby surface, The Journal of the Acoustical Society of America, 130(6): 3736-3745, doi: 10.1121/1.3655880.
  • 15. Martínez-Sala R., Rubio C., García-Raffi L.M., Sánchez-Pérez J.V., Sánchez-Pérez E.A., Llinares J. (2006), Control of noise by trees arranged like sonic crystals, Journal of Sound and Vibration, 291(1–2): 100-106, doi: 10.1016/j.jsv.2005.05.030.
  • 16. Martínez-Sala R., Sancho J., Sánchez J.V., Gómez V., Llinares J., Meseguer F. (1995), Sound attenuation by sculpture, Nature, 378: 241, doi: 10.1038/378241a0.
  • 17. Romero-García V., Garcia-Raffi L.M., Sánchez-Pérez J.V. (2011), Evanescent waves and deaf bands in sonic crystals, AIP Advances, 1(4): 041601, doi: 10.1063/1.3675801.
  • 18. Sánchez-Dehesa J., Garcia-Chocano V.M., Torrent D., Cervera F., Cabrera S., Simon F. (2011), Noise control by sonic crystal barriers made of recycled material, The Journal of the Acoustical Society of America, 129(3): 1173-1183, doi: 10.1121/1.3531815.
  • 19. Tang S.K. (2018), Reduction of sound transmission across plenum windows by incorporating an array of rigid cylinders, Journal of Sound and Vibration, 415: 25-40, doi: 10.1016/j.jsv.2017.11.027.
  • 20. Umnova O., Attenborough K., Linton C.M. (2006), Effects of porous covering on sound attenuation by periodic arrays of cylinders, The Journal of the Acoustical Society of America, 119(1): 278-284, doi: 10.1121/1.2133715.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91c4cbc2-a543-434a-a666-6a0a8ce915f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.