PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Earthquake convexity and some new related inequalities

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unfortunately, eleven of our provinces were severely affected due to two severe earthquakes that occurred in our country, the Republic of Turkey, on February 6, 2023. As a result, thousands of buildings were destroyed and tens of thousands of our citizens lost their lives. From past to present, such disasters have occurred in many parts of our world and will continue to happen. In order to raise awareness for researchers and academicians reading our article, we will give a new definition of convexity in this article, and we will call it “earthquake convexity”. In this paper, we study some algebraic properties of the earthquake convexity. Then we compare the results obtained with both Hölder, Hölder-İşcan inequalities and power-mean, improved power-mean integral inequalities and show that the results obtained with Hölder-İşcan and improved powermean inequalities are better than the others. Some applications to special means of real numbers are also given.
Wydawca
Rocznik
Strony
63--73
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Department of Customs Management, Faculty of Applied Sciences, Bayburt University, Baberti Campus, 69000 Bayburt, Türkiye
  • Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28200 Giresun, Türkiye
  • Department of Customs Management, Faculty of Applied Sciences, Bayburt University, Baberti Campus, 69000 Bayburt, Türkiye
Bibliografia
  • [1] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, And Engineering Applications, Society for Industrial and Applied Mathematics, Philadelphia, 2001.
  • [2] S. Boyd, S. P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University, Cambridge, 2004.
  • [3] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91-95.
  • [4] S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstr. Math. 32 (1999), no. 4, 687-696.
  • [5] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and its Applications, RGMIA Monogr., Victoria University, Melbourne, 2004.
  • [6] S. S. Dragomir, J. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), no. 3, 335-341.
  • [7] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.
  • [8] I. İşcan, New refinements for integral and sum forms of Hölder inequality, J. Inequal. Appl. 2019 (2019), Paper No. 304.
  • [9] İ. İşcan, H. Kadakal and M. Kadakal, Some new integral inequalities for n-times differentiable log-convex functions, New Trends Math. Sci. 5 (2017), no. 2, 10-15.
  • [10] İ. İşcan, H. Kadakal and M. Kadakal, Some new integral inequalities for n-times differentiable quasi-convex functions, Sigma J. Eng. Natural Sci. 35 (2017), no. 3, 363-368.
  • [11] I. İşcan, M. Kadakal and H. Kadakal, On two times differentiable preinvex and prequasiinvex functions, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68 (2019), no. 1, 950-963.
  • [12] H. Kadakal, Hermite-Hadamard type inequalities for trigonometrically convex functions, Sci. Stud. Res. Ser. Math. Inform. 28 (2018), no. 2, 19-28.
  • [13] H. Kadakal, New inequalities for strongly r-convex functions, J. Funct. Spaces 2019 (2019), Article ID 1219237.
  • [14] H. Kadakal, M. Kadakal and I. İşcan, Some new integral inequalities for n-times differentiable s-convex functions in the first sense, Turkish J. Anal. Number Theory 5 (2017), no. 2, 63-68.
  • [15] M. Kadakal, I. İşcan, H. Kadakal and K. Bekar, On improvements of some integral inequalities, Honam Math. J. 43 (2021), no. 3, 441-452.
  • [16] S. Maden, H. Kadakal, M. Kadakal and I. İşcan, Some new integral inequalities for n-times differentiable convex and concave functions, J. Nonlinear Sci. Appl. 10 (2017), no. 12, 6141-6148.
  • [17] K. R. Mecke, Additivity, convexity, and beyond: Applications of Minkowski functionals in statistical physics, in: Statistical Physics and Spatial Statistics, Lecture Notes in Phys. 554, Springer, Berlin (2000), 111-184.
  • [18] H. Nikaidô, Convex Structures and Economic Theory, Math. Sci. Eng. 51, Academic Press, New York, 2016.
  • [19] J. E. Peajcariaac and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Boston, 1992.
  • [20] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), no. 1, 303-311.
  • [21] B.-Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl. (2012), Article ID 980438.
  • [22] G. Zabandan, A new refinement of the Hermite-Hadamard inequality for convex functions, JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), no. 2, Article ID 45.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91bf2983-e37f-4a29-9583-55177e6997e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.