PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of deep learning neural networks for the diagnosis of electrical damage to the induction motor using the axial flux

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In industrial drive systems, one of the widest group of machines are induction motors. During normal operation, these machines are exposed to various types of damages, resulting in high economic losses. Electrical circuits damages are more than half of all damages appearing in induction motors. In connection with the above, the task of early detection of machine defects becomes a priority in modern drive systems. The article presents the possibility of using deep neural networks to detect stator and rotor damages. The opportunity of detecting shorted turns and the broken rotor bars with the use of an axial flux signal is presented.
Rocznik
Strony
1031--1038
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Department of Electrical Machines, Drives and Measurements, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
Bibliografia
  • [1] H. Henao et al., “Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques”, IEEE Ind. Electron. Mag. 8, 31–42 (2014).
  • [2] W. T. Thomson, “A review of on-line condition monitoring techniques for three-phase squirrel-cage induction motors – past, present and future”, in IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, pp. 3–18, 1999.
  • [3] C. T. Kowalski, Diagnostyka układów napędowych z silnikiem indukcyjnym z zastosowaniem metod sztucznej inteligencji, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2013 [in Polish].
  • [4] C. T. Kowalski and T. Orlowska-Kowalska, “Neural networks application for induction motor faults diagnosis”, Math. Comput. Simul. 63, 435–448 (2003).
  • [5] Q. He and D. Du, “Fault Diagnosis of Induction Motor using Neural Networks”, in International Conference on Machine Learning and Cybernetics, pp. 1090–1095, 2007.
  • [6] V. N. Ghate and S. V. Dudul, “Optimal MLP neural network classifier for fault detection of three phase induction motor”, Expert Syst. Appl. 37, 3468–3481 (2010).
  • [7] C. T. Kowalski and M. Kamiński, “Rotor fault detector of the converter-fed induction motor based on RBF neural network”, Bull. Pol. Ac.: Tech. 62 (1), 69–76 (2014).
  • [8] M. Skowron, M. Wolkiewicz, T. Orlowska-Kowalska, and C. T. Kowalski, “Application of Self-Organizing Neural Networks to Electrical Fault Classification in Induction Motors”, Appl. Sci.- Basel 9 (4), 616 (2019).
  • [9] D. N. Coelho, G. A. Barreto, and C. M. S. Medeiros, “Detection of short circuit faults in 3-phase converter-fed induction motors using kernel SOMs”, in International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization, pp. 1–7, 2017.
  • [10] R. N. Dash, B. Subudhi, and S. Das, “A comparison between MLP NN and RBF NN techniques for the detection of stator inter-turn fault of an induction motor”, in International Conference on Industrial Electronics, Control and Robotics, pp. 251–256, 2010.
  • [11] E. Kilic, O. Ozgonenel, and A. E. Ozdemir, “Fault Identification in Induction Motors with RBF Neural Network Based on Dynamical PCA”, in IEEE International Electric Machines & Drives Conference, pp. 830–835, 2007.
  • [12] Y. O. Lee, J. Jo, and J. Hwang, “Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection”, in IEEE International Conference on Big Data, pp. 3248–3253, 2017.
  • [13] S. Afrasiabi, M. Afrasiabi, B. Parang, and M. Mohammadi, “Real-Time Bearing Fault Diagnosis of Induction Motors with Accelerated Deep Learning Approach”, in 10th International Power Electronics, Drive Systems and Technologies Conference, pp. 155–159, 2019.
  • [14] S. E. Pandarakone, M. Masuko, Y. Mizuno, and H. Nakamura, “Deep Neural Network Based Bearing Fault Diagnosis of Induction Motor Using Fast Fourier Transform Analysis”, in IEEE Energy Conversion Congress and Exposition, pp. 3214–3221, 2018.
  • [15] P. Chattopadhyay, N. Saha, C. Delpha, and J. Sil, “Deep Learning in Fault Diagnosis of Induction Motor Drives”, in Prognostics and System Health Management Conference, pp. 1068–1073, 2018.
  • [16] E. Principi, D. Rossetti, S. Squartini, and F. Piazza, “Unsupervised electric motor fault detection by using deep autoencoders”, IEEE-CAA J. Automatica Sin. 6 (2), 441–451 (2019).
  • [17] M. Wolkiewicz and M. Skowron, “Diagnostic System for Induction Motor Stator Winding Faults Based on Axial Flux”, Power Electronics and Drives 2(37) (2) 137–150 (2017).
  • [18] D. T. Hoang and H. J. Kang, “A Motor Current Signal Based Bearing Fault Diagnosis Using Deep Learning And Information Fusion”, IEEE Trans. Instrum. Meas. 69 (6), 3325–3333 (2019).
  • [19] G. Xu, M. Liu, Z. Jiang, D. Söffker, and W. Shen, “Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning”, Sensors 19 (5), 1088 (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91b8bc44-936c-407c-91b8-b2070a6c3be1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.