Identyfikatory
DOI
Warianty tytułu
Degradacja pentachlorofenolu przez osad czynny z fenolem i glukozą jako substratami wzrostowymi
Języki publikacji
Abstrakty
Important factors affecting the effectiveness of microbiological degradation of chlorophenols include the presence of additional growth substrates, which ensure the accessibility of electron acceptors and electron donors, or the applied strains of microorganisms and their adaptation to pollution. Therefore an improvement of PCP degradation by the adaptation of activated sludge to PCP with phenol and glucose as cometabolites was examined. The activated sludge was adapted to 12 mg∙L-1 of PCP and to 200 mg∙L-1 of phenol, and then, the effect of the adaptation of activated sludge and the presence of additional sources of carbon and energy on the biodegradation of PCP and sorption properties were tested. The obtained results confirmed that the presence of additional sources of carbon and energy in the growth medium would improve the efficiency of PCP degradation. Among all analyzed types of research setups, the highest PCP degradation was noted in setups with phenol, regardless of the method of activated sludge adaptation or lack of adaptation. The biodegradation of PCP in the presence of glucose was less efficient than in the presence of phenol. The highest, 60% decrease in PCP concentration was obtained for activated sludge adapted to PCP in the presence of phenol.
Długotrwałe stosowanie pentachlorofenolu (PCP) spowodowało jego powszechne występowanie w środowisku. Ludzie mający stały kontakt z PCP narażeni są na choroby nowotworowe, uszkodzenia płodu, mutacje genetyczne, zaburzenia obrazu krwi, a także zmiany w układzie nerwowym. Ważnymi czynnikami wpływającymi na efektywność mikrobiologicznego rozkładu chlorofenoli są dodatkowe substraty wzrostowe zapewniające donory i akceptory elektronów, odpowiednie mikroorganizmy i ich adaptacja do rozkładanych związków. Z tego powodu oceniono wpływ adaptacji osadu czynnego do PCP i fenolu oraz glukozy i fenolu, jako dodatkowych substratów wzrostowych, na poprawę biodegradacji PCP. Osad czynny został zaadaptowany do 12 mg∙L-1 PCP i 200 mg∙L-1 fenolu, a następnie efekt adaptacji osadu czynnego i dodatku źródła węgla i energii na biodegradację i sorpcję PCP był badany. Uzyskane rezultaty potwierdziły, że obecność dodatkowego źródła węgla i energii w pożywce zwiększa efektywność usuwania PCP. Najwyższe, 60 procentowe usunięcie PCP uzyskano w zaadaptowanym do PCP osadzie czynnym w obecności fenolu jako substratu wzrostowego.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
31--41
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Poland, Environmental Biotechnology Department Silesian University of Technology
autor
- Silesian University of Technology, Poland, Environmental Biotechnology Department Silesian University of Technology
Bibliografia
- 1. Aksu, Z. & Yener, J. (2001). A comparative adsorption/biosorption of mono-chlorained phenols onto various sorbents, Waste Management, 21,8, pp. 695-702.
- 2. Antizar-Ladisaro, B. & Galil, N.I. (2004). Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer, Water Research, 38, pp. 267-276.
- 3. APHA-AWWA-WPCF (1999). Standard methods for the examination of water and wastewater. 20th Edition.Clasceri L.S., Greenberg A.E., Eaton A.D. (Eds.).
- 4. Arora, P.K. & Bae, H. (2014). Bacterial degradation of chlorophenols and their derivatives, Microbial Cell Factories, 13, 1, pp. 31-47.
- 5. ATSDR - U.S. Agency for Toxic Substances & Disease Registry, Department of Health and Human Services (2001). Toxicological profile for pentachlorophenol, Atlanta 2001.
- 6. Bhattacharya, S.K., Yuan, Q. & Jin, P. (1996). Removal of pentachlorophenol from wastewater by combined anaerobic-aerobic treatment, Journal of Hazardous Materials, 49, pp. 143-154.
- 7. Carucci, A., Milia, S., Gioannisis, G. & Piredda, M. (2008). Acetate- fed aerobic granular sludge for the degradation of 4-chlorophenol, Journal of Hazardous Materials, 166, pp. 483-490.
- 8. Cornelissen, G. & Sijm, D.T.H.M. (1996). An energy budget model for the biodegradation and cometabolism of organic substances, Chemosphere, 33, 5, pp. 817-830.
- 9. Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC, Official Journal of the European Communities, L 331/1.
- 10. El-Naas, M.H., Mousa, H.A. & El Gamal, M. (2017). Microbial degradation of chlorophenols, In: Microbe-Induced Degradation of Pesticides, Singh, S.N. (ed.), Environmental Science and Engineering, (pp. 23-58). Springer, Switzerland 2017.
- 11. Field, J.A. & Sierra-Alvarez, R. (2008). Microbial degradation of chlorinated phenols, Reviews in Environmental Science and Biotechnology, 7, pp. 211-241.
- 12. Greń, I., Guzik, U., Woj cieszyńska, D. & Łabużek, S. (2008). Molecular foundations of aromatic xenobiotics decomposition, Biotechnologia, 2, 81, pp. 58-67. (in Polish)
- 13. Hao, O.J., Kim, M., Seagren, E.A. & Kim, H. (2002). Kinetics of phenol and chlorophenol utilization by Acinetobacter species, Chemosphere, 46, pp. 792-807.
- 14. Hill, G.A. & Nawrocki, P.A. (1996). Cometabolic degradation of 4-chlorophenol by Alcaligenes eutrophus, Applied Microbiology and Biotechnology, 46, pp. 163-168.
- 15. Huang, L., Gan, L., Zhao, Q., Logan, B.E., Lu, H. & Chen, G. (2011). Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in microbial fuel cell, Bioresource Technology, 102, pp. 8762-8768.
- 16. Jacobsen, B.N., Arvin, E. & Reinders, M. (1996). Factors affecting sorption of pentachlorophenol to suspended microbial biomass, Water Research, 30, 1, pp. 13-20.
- 17. Juteau, P., Beaudet, R., McSween, G., Lépine, F., Milot, S. & Bisaillon, J.G. (1995). Anaerobic biodegradation of pentachlorophenol by a methanogenic consortium, Applied Microbiology and Biotechnology, 44, pp. 218-224.
- 18. Kim, M.H. & Ha, O.J. (1999). Cometabolic degradation of chlorophenols by Acinetobacetr species, Water Research, 33, 2, pp. 562-574.
- 19. Kusmierek, K., Idźkiewicz, P., Świątkowski, A. & Dąbek, L. (2017). Adsorptive removal of pentachlorophenol, Archives of Environmental Protection, 43, 3, pp. 10-16.
- 20. Lamar, R.T., Larson, M.J. & Kirk, T.K. (1990). Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp., Applied and Environmental Microbiology, 56, pp. 3519-3526.
- 21. Loh, K.C. & Wang, S.J. (1998). Enhanced of biodegradation of phenol and nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources, Biodegradation, 8, pp. 329-338.
- 22. Lopez-Echartea, E., Macek, T., Demnerova, K. & Uhlik, O. (2016). Bacterial biotransformation of pentachlorophenol and micropollutants formed during its production process, International Journal of Environmental Research and Public Health, 13, pp. 1146-1166.
- 23. Marsolek, M.D., Kirisits, M.J. & Rittmann, B.E. (2007). Biodegradation of 2,4,5-trichlorophenol by aerobic microbial communities: biorecalcitrance, inhibition, and adaptation, Biodegradation, 18, pp. 351-358.
- 24. Mosca, A.D. & Tomei, M.C. (2015). Pentachlorophenol aerobic removal in sequential reactor: start-up procedure and kinetic study, Environmental Technology, 36, 3, pp. 327-335.
- 25. McMurry, J. (2000). Organic chemistry, PWN, Warszawa, 2000. (in Polish)
- 26. Orser, C.S. & Lange, C.C. (1994). Molecular analysis of pentachlorophenol degradation, Biodegradation, 5, 3-4, pp. 277-288.
- 27. Sahinkaya, E. & Dilek, F.B. (2005). Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge - Evaluation of biokinetic coefficients, Environmental Research, 99, pp. 243-252.
- 28. Sahinkaya, E. & Dilek, F.B. (2006). Effect of biogenic substrate concentration on 4-chlorophenol degradation kinetics in sequencing batch reactors with instantaneous feed, Journal of Hazardous Materials, B137, pp. 282-287.
- 29. Shen, D.S., Liu, X.W. & Feng, H.J. (2005). Effect of easily degradable substrate on anaerobic degradation of pentachlorophenol in an upflow anaerobic sludge blanket (UASB) reactor, Journal of Hazardous Materials, B119, pp. 239-243.
- 30. Szewczyk, R. & Długoński, J. (2007). Microbial decomposition of pentachlorophenol, Biotechnologia, 1, 76, pp. 121-134. (in Polish)
- 31. Szewczyk, R. & Długoński, J. (2009). Pentachlorophenol and spent engine oil degradation by Mucor ramosissimus, International Biodeterioration and Biodegradation, 63, pp. 123-129.
- 32. US EPA - U.S. (1999). Environmental Protection Agency: Integrated risk information system on pentachlorophenol. National Centre for Environmental Assessment, Office of Research and Development, Washington, DC, 1999.
- 33. Uysal, A. & Turkman, A. (2007). Biodegradation of 4-CP in an activated sludge reactor: Effects of biosurfacant and the sludge age, Journal of Hazardous Materials, 148, pp. 151-157.
- 34. Visvanathan, C., Thu, L.N., Jegatheesan, V. & Anotai, J. (2005). Biodegradation of pentachlorophenol in a membrane bioreactor, Desalination, 183, pp. 455-464.
- 35. Wang, S., Huang, L. Gan, L.,Quan, X., Li, N., Chen, G., Lu, L., Xing, D. & Yang, F. (2012). Combined effects of enrichment procedure and non-fermentable or fermentable co-substrate on performance and bacterial community for pentachlorophenol degradation in microbial fuel cells, Bioresource Technology, 120, pp. 120-126.
- 36. Wang, Q., Li, Y, Wang, Y., Wang, C. & Wang, P. (2015). Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychotropic Pseudomonas putida LY1, Environmental Science and Pollution Research, 22, 1, pp. 565-573.
- 37. Webb, M.D., Ewbank, G., Perkins, J. & McCarthy, A.J. (2001). Metabolism of pentachlorophenol by Saccharomonospora viridis strains isolated from mushroom compost, Soil Biology and Biochemistry, 33, pp. 1903-1914.
- 38. Zilouei, H., Guieysse, B. & Mattiasson, B. (2006). Biological degradation of chlorophenols in packed-bed bioreactors using mixed bacterial consortia, Process Biochemistry, 41, pp. 1083-1089.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91b476ee-af33-4b76-ba2d-dbd3540863ec