PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dendrochronological dating as the basis for developing a landslide hazard map – An example from the Western Carpathians, Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most landslide hazard maps are developed on the basis of an area’s susceptibility to a landslide occurrence, but dendrochronological techniques allows one to develop maps based on past landslide activity. The aim of the study was to use dendrochronological techniques to develop a landslide hazard map for a large area, covering 3.75 km2. We collected cores from 131 trees growing on 46 sampling sites, measured tree-ring width, and dated growth eccentricity events (which occur when tree rings of different widths are formed on opposite sides of a trunk), recording the landslide events which had occurred over the previous several dozen years. Then, the number of landslide events per decade was calculated at every sampling site. We interpolated the values obtained, added layers with houses and roads, and developed a landslide hazard map. The map highlights areas which are potentially safe for existing buildings, roads and future development. The main advantage of a landslide hazard map developed on the basis of dendrochronological data is the possibility of acquiring long series of data on landslide activity over large areas at a relatively low cost. The main disadvantage is that the results obtained relate to the measurement of anatomical changes and the macroscopic characteristics of the ring structure occurring in the wood of tilted trees, and these factors merely provide indirect information about the time of the landslide event occurrence.
Czasopismo
Rocznik
Strony
173--184
Opis fizyczny
Bibliogr. 89 poz., rys.
Twórcy
  • Faculty of Earth Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • Faculty of Earth Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • Faculty of Earth Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH – University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland
autor
  • Faculty of Earth Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Antronico L, Borrelli L, Coscarelli R, Pasqua AA, Petrucci O and Gullà G, 2013. Slope movements induced by rainfalls damaging an urban area: the Catanzaro case study (Calabria, southern Italy). Landslides10(6): 801–814.
  • 2. ArcGIS Desktop, 2017.Release 10.5. ESRI, Redlands, CA.
  • 3. ArcGIS Help, 2017. Comparing interpolation methods. Available at: http://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/comparing-interpolation-methods.htm.
  • 4. Béjar-Pizarro M, Notti D, Mateos RM, Ezquerro P, Centolanza G, Herrera G, Bru G, Sanabria M, Solari L, Duro J and Fernández J, 2017. Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data.Remote Sensing9(9): 876.
  • 5. Bollschweiler M, Stoffel M, Ehmisch M and Monbaron M, 2007. Reconstructing spatio-temporal patterns of debris-flow activity using dendrogeomorphological methods. Geomorphology87(4): 337–351.
  • 6. Bovenga F, Pasquariello G, Pellicani R, Refice A and Spilotro G, 2017. Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: The large landslide of Carlantino (Italy). Catena151: 49–62.
  • 7. Brabb EE, Pampeyan EH, Bonilla MG, 1972. Landslide susceptibility in San Mateo County. Miscellaneous Field Studies Map. California. U.S. Geological Survey, Map MF-360, Scale 1:62,500.
  • 8. Butler DR, 1987. Teaching general principles and applications of dendrogeomorphology. Journal of Geological Education35(2): 64–70.
  • 9. Carrara A, Guzzetti F, Cardinali M and Reichenbach P, 1999. Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard. Natural Hazards20(2–3): 117–135.
  • 10. Carrara A, Crosta G and Frattini P, 2003. Geomorphological and historical data in assessing landslide hazard. Earth Surface Processes and Landforms28(10): 1125–1142.
  • 11. Caruso C and Quarta F, 1998. Interpolation methods comparison. Computers & Mathematics with Applications35(12): 109–126.
  • 12. Catani F, Casagli N, Ermini L, Righini G and Menduni G, 2005. Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides2(4): 329–342.
  • 13. Central Office of Geodesy and Cartography (CODGiK), 2015. Digital elevation data, Available at:http://www.codgik.gov.pl/index.php/zasob/numeryczne-dane-wysokosciowe.html.
  • 14. Chase RB, Chase KE, Kehew AE and Montgomery WW, 2001. Determining the kinematics of slope movements using low-cost monitoring and cross-section balancing. Environmental and Engineering Geoscience7(2): 193–203.
  • 15. Chen H and Petley DN, 2005. The impact of landslides and debris flows triggered by Typhoon Mindulle in Taiwan.Quarterly Journal of Engineering Geology and Hydrogeology38(3): 301–304.
  • 16. Childs C, 2004. Interpolating Surfaces in ArcGIS Spatial Analyst [online]. ArcUser Online July – September 2004. Available at: https://www.esri.com/news/arcuser/0704/files/interpolating.pdf – 30.10.2015.
  • 17. Colesanti C and Wasowski J, 2006. Investigating landslides with spaceborne Synthetic Aperture Radar (SAR) interferometry. Engineering Geology88(3–4): 173–199.
  • 18. Corominas J and Moya J, 2010. Contribution of dendrochronology to the determination of magnitude-frequency relationships for landslides. Geomorphology124: 137–149.
  • 19. Corona C, Lopez Saez J and Stoffel M, 2014. Defining optimal sample size, sampling design and thresholds for dendrogeomorphic landslide sampling. Quaternary Geochronology22: 72–84.
  • 20. Crawford MH, Crowley K, Potter SH, Saunders WSA and Johnston D, 2018. Risk modelling as a tool to support natural hazard risk management in New Zealand local government. International Journal of Disaster Risk Reduction28: 610–619.
  • 21. Demoulin A and Chung CJ, 2007. Mapping landslide susceptibility from small datasets: A case study in the Pays de Herve (E Belgium). Geomorphology89(3): 391–404.
  • 22. Di Piazza A, Lo Conti F, Noto LV, Viola F and La Loggia G, 2011. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. International Journal of Applied Earth Observation and Geoinformation13(3): 396–408.
  • 23. Evans NC, Huang SW and King JP, 1999. The natural terrain landslide study phases I and II. GEO Report No. 73, Geotechnical Engineering Office, Hong Kong SAR Government.
  • 24. ESRI ASCII Grid, 2014. Surveyor General of Poland, License no DIO.DFT.DSI.7211.18428.2014_PL_N for University of Silesia.
  • 25. Fall M, Azzam R and Noubactep C, 2006. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Engineering Geology82(4): 241–263.
  • 26. Gärtner H, Stoffel M, Lièvre I, Conus D, Grichting M and Monbaron M, 2003. Debris-flow frequency derived from tree-ring analyses and geomorphic mapping, Valais, Switzerland. In: Rickenmann D and Chen Ch, eds., Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment1: 207–217.
  • 27. Gärtner H and Heinrich I, 2013. Dendrogeomorphology. In: Elias SA, eds., The Encyclopedia of Quaternary Science. Elsevier, Amsterdam, 2: 91–103.
  • 28. Gong G, Mattevada S and O’Bryant SE, 2014. Comparison of the accuracy of kriging and IDW interpolations in estimating ground water arsenic concentrations in Texas. Environmental Research130: 59–69.
  • 29. Guida D, Pelfini M and Santilli M, 2008. Geomorphological and dendrochronological analyses of a complex landslide in the Southern Apennines. Geografiska Annaler. Series A, Physical Geography90(3): 211–226.
  • 30. Guzzetti F, Cardinali M, Reichenbach P and Carrara A, 2000. Comparing Landslide Maps: A Case Study in the Upper Tiber River Basin, Central Italy. Environmental Management25(3): 247–263.
  • 31. Guzzetti F, Ardizzone F, Cardinali M, Rossi M and Valigi D, 2009. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters279: 222–229.
  • 32. Haneberg WC, Cole WF and Kasali G, 2009. High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bulletin of Engineering Geology and the Environment68: 263–276.
  • 33. Hess M, 1965. Piętra klimatyczne w polskich Karpatach Zachodnich (Climatic zones in the Polish Western Carpathians). Zeszyty Naukowe Uniwersytetu Jagiellońskiego 155, Prace Geograficzne11: 1–268 (in Polish).
  • 34. Hutchinson MF, 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology106(3–4): 211–232.
  • 35. Hutchinson MF, 2011. ANUDEM Version 5.3. User Guide. Fenner School of Environment and Society, Australian National University. 25 pp.
  • 36. Innes JL, 1983. Lichenometric dating of debris-flow deposits in the Scottish Highlands. Earth Surface Processes and Landforms8: 579–588.
  • 37. Ives JD and Bovis MJ, 1978. Natural Hazards Maps for Land-Use Planning, San Juan Mountains, Colorado, U.S.A. Arctic and Alpine Research10(2): 185–212.
  • 38. Journault J, Macciotta R, Hendry MT, Charbonneau F, Huntley D and Bobrowsky PT, 2018. Measuring displacements of the Thompson River valley landslides, south of Ashcroft, BC, Canada, using satellite InSAR. Landslides15(4): 621–636.
  • 39. Lebourg T, Hernandez M, Zerathe S, El Bedoiu S, Jomard H and Fresia B, 2014. Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach. Engineering Geology114(3–4): 238–250.
  • 40. Lee MJ, Park I, Won JS and Lee S, 2016. Landslide hazard mapping considering rainfall probability in Inje, Korea.Geomatics, Natural Hazards and Risk7(1): 424–446.
  • 41. Li Z, 1988. On the measure of digital terrain model accuracy. The Photogrammetric Record12(72): 873–877.
  • 42. Li J and Heap AD, 2014. Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software53: 173–189.
  • 43. Lopez Saez J, Corona C, Stoffel M, Schoeneich P and Berger F, 2012. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology138(1): 189–202.
  • 44. Mahmood I, Qureshi SN, Tariq S, Atique L and Iqbal MF, 2015. Analysis of Landslides Triggered by October 2005, Kashmir Earthquake. PLOS Currents Disasters. 2015 Aug 26. Edition 1.
  • 45. Mahr T and Malgot J, 1978. Zoning maps for regional and urban development based on slope stability. In: Proceedings of the Third International Congress of the I.A.E.G. (Madrid), Spain 1(1): 124–137.
  • 46. Malik I and Owczarek P, 2009. Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (Eastern Sudetes—Central Europe). Geochronometria34(1): 57–66.
  • 47. Malik I and Wistuba M, 2012. Dendrochronological methods for reconstructing mass movements – An example of landslide activity analysis using tree-ring eccentricity. Geochronometria39(3): 180–196.
  • 48. Malik I, Wistuba M, Migoń P and Fajer M, 2016. Activity of Slow-Moving Landslides Recorded in Eccentric Tree Rings of Norway Spruce Trees (Picea Abies Karst.) — An Example from the Kamienne MTS. (Sudetes MTS., Central Europe).Geochronometria43(1): 24–37.
  • 49. Malik I, Wistuba M, Tie Y, Owczarek P, Woskowicz-Ślęzak B and Łuszczyńska K, 2017. Mass movements of differing magnitude and frequency in a developing high-mountain area of the Moxi basin, Hengduan Mts, China – A hazard assessment. Applied Geography87: 54–65.
  • 50. Micu M and Bălteanu D, 2013. A deep-seated landslide dam in the Siriu Reservoir (Curvature Carpathians, Romania).Landslides10 (3): 323–329.
  • 51. Migoń P, Pánek T, Malik I, Hrádecký J, Owczarek P and Silhán K, 2010. Complex landslide terrain in the Kamienne Mountains, middle Sudetes, SW Poland. Geomorphology124(3–4): 200–214.
  • 52. Murillo-García FG, Alcántara-Ayala I, Ardizzone F, Cardinali M, Fiourucci F and Guzzetti F, 2015. Satellite stereoscopic pair images of very high resolution: a step forward for the development of landslide inventories. Landslides12(2): 277–291.
  • 53. Netto ALC, Sato AM, Avelar A de S, Vianna LGG, Araújo IS, Ferreira DLC, Lima PH, Silva APA and Silva RP, 2013. January 2011: The Extreme Landslide Disaster in Brazil. In: Margottini C, Canuti P and Sassa K, eds., Landslide Science and Practice. Springer, Berlin, Heidelberg.
  • 54. Papciak T, Malik I, Krzemień K, Wistuba M, Gorczyca E, Wrońska-Wałach D and Sobucki M, 2015. Precipitation as a factor triggering landslide activity in the Kamień massif (Beskid Niski Mts, Western Carpathians). Bulletin of Geography.Physical Geography Series8: 5–17.
  • 55. Paudel PP, Omura H, Kubota T and Morita K, 2003. Landslide damage and disaster management system in Nepal.Disaster Prevention and Management12(5): 413–419.
  • 56. Perret S, Stoffel M and Kienholz H, 2006. Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps – A dendrogeomorphological case study. Geomorphology74(1–4): 219–231.
  • 57. Perrone A, Lapenna V and Piscitelli S, 2014. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews135: 65–82.
  • 58. Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K and Mitchell WA, 2007. Trends in landslide occurrence in Nepal. Natural Hazards43(1): 23–44.
  • 59. Petley DN, 2010. On the impact of climate change and population growth on the occurrence of fatal landslides in South, East and SE Asia. Quarterly Journal of Engineering Geology and Hydrogeology43: 487–496.
  • 60. Piegari E, Cataudella V, Di Maio R, Nicodemi M, Soldovieri MG, 2009. Electrical resistivity tomography and statistical analysis in landslide modelling: A conceptual approach. Journal of Applied Geophysics68(2): 151–158.
  • 61. Pham BT, Bui DT and Prakash I, 2018. Application of Classification and Regression Trees for Spatial Prediction of Rainfall-Induced Shallow Landslides in the Uttarakhand Area (India) Using GIS. In: Mal S, Singh R and Huggel C, eds., Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series. Springer, Cham, 1–12.
  • 62. Qui J, Wang X, He S, Liu H, Lai J and Wang L, 2017. The catastrophic landside in Maoxian County, Sichuan, SW China, on June 24, 2017. Natural Hazards89(3): 1485–1493.
  • 63. Riedel B and Walther A, 2008. InSAR processing for the recognition of landslides. Advances in Geosciences14: 189–194.
  • 64. Roback K, Clark MK, West AJ, Zekkos D, Li G, Gallen SF, Chamlagain D and Godt JW, 2018. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology 301: 121–138.
  • 65. Rybář J, 1999. Slope movements inducted by torrential rains in the region of Carpathians flysch (in Czech). Proc. I. Conf. Geology and Environment. Bratislava, 24–25 January 2001: 77–78.
  • 66. Sandić C, Abolmasov B, Marjanović M, Begović P and Jolović B, 2017. Landslide Disaster and Relief Activities: A Case Study of Urban Area of Doboj City. In: Mikoš M, Arbanas Ž, Yin Y and Sassa K, eds., Advancing Culture of Living with Landslides. WLF 2017, Springer, Cham, 383–393.
  • 67. Schlögel R, Malet JP, Reichenbach P, Remaître A and Doubre C, 2015. Analysis of a landslide multi-date inventory in a complex mountain landscape: the Ubaye valley case study. Natural Hazards and Earth System Sciences15(10): 2369–2389.
  • 68. Schweingruber FH, 1996. Tree Rings and Environment. Dendroecology. Birmensdorf; Berne: Swiss Federal Institute for Forest, Snow and Landscape Research, WSL/FNP; Paul Haupt.
  • 69. Seneta W and Dolatowski J, 2008. Dendrologia(Dendrology). PWN, Warszawa.
  • 70. Shroder JF, 1980. Dendrogeomorphology: review and new techniques of tree-ring dating. Progress in Physical Geography4(2): 161–188.
  • 71. Šilhán K, Pánek T, Turský O, Brázdil R, Klimeš J and Kašičková L, 2014. Spatio-temporal patterns of recurrent slope instabilities affecting undercut slopes in flysch: A dendrogeomorphic approach using broad-leaved trees. Geomorphology213: 240–254.
  • 72. Šilhán K, 2015. Can tree tilting indicate mechanisms of slope movement? Engineering Geology199: 157–164.
  • 73. Šilhán K and Stoffel M, 2015. Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology236: 34–43.
  • 74. Šilhán K, 2016. How different are the results acquired from mathematical and subjective methods in dendrogeomorphology? Insights from landslide movements. Geomorphology253: 189–198.
  • 75. Šilhán K, Prokešová R, Medveďová A and Tichavský R, 2016. The effectiveness of dendrogeomorphic methods for reconstruction of past spatio-temporal landslide behavior. Catena147: 325–333.
  • 76. Šilhán K, 2017. Dendrogeomorphic chronologies of landslides: Dating of true slide movements? Earth Surface Processes and Landforms42(13): 2109–2118.
  • 77. Stefanini MC, 2004. Spatio-temporal analysis of a complex landslide in the Northern Apennines (Italy) by means of dendrochronology. Geomorphology63(3–4): 191–202.
  • 78. Stoffel M, 2005. Spatio-temporal variations of rockfall activity into forests – results from tree-ring and tree analysis. PhD thesis No. 1480, University of Fribourg, GeoFocus, 12.
  • 79. Stoffel M, Butler DR and Corona C, 2013. Mass movements and tree rings: A guide to dendrogeomorphic field sampling and dating. Geomorphology200: 106–120.
  • 80. Stupnicka E, 2013. Geologia regionalna Polski(Regional geology of Poland). Uniwersytet Warszawski, Warszawa (in Polish).
  • 81. Uhlemann S, Wilkinson PB, Chambers JE, Maurer H, Merritt AJ, Gunn DA and Meldrum PI, 2015. Interpolation of landslide movements to improve the accuracy of 4D geoelectrical monitoring. Journal of Applied Geophysics121: 93–105.
  • 82. Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, van Beek LPH and Vandekerckhove L, 2007. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms32: 754–769.
  • 83. Van Den Eeckhaut M, Muys B, Van Loy K, Poesen J and Beeckman H, 2009. Evidence for repeated reactivation of old landslides under forest. Earth Surface Processes and Landforms34(3): 352–365.
  • 84. Winchester V and Chaujar RK, 2002. Lichenometric dating of slope movements, Nant Ffrancon, North Wales.Geomorphology47: 61–74.
  • 85. Wistuba M, Malik I, Gärtner H, Kojs P and Owczarek P, 2013. Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abiesKarst. in the Carpathian and Sudeten Mountains (Central Europe). Catena111: 41–55.
  • 86. Wistuba M and Malik I, 2016. Dendrochronologiczna ocena przestrzennej zmienności zagrożenia osuwiskowego w masywie góry Prusów (Beskid Żywiecki) (Dendrochronological assessment of spatial distribution of landslide hazard in the massif of Mt Prusów (Beskid Żywiecki Mts)). Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej w Rogowie18, 48(3): 150–160 (in Polish).
  • 87. Xu Q, Fan XM, Huang RQ and Van Westen C, 2009. Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China. Bulletin of Engineering Geology and the Environment68(3): 373–386.
  • 88. Zielonka T and Dubaj N, 2009. A tree-ring reconstruction of geomorphologie disturbances in cliff forests in the Tatra Mts.Landform Analysis11: 71–76.
  • 89. Zielonka T and Malcher P, 2009. The dynamics of a mountain mixed forest under wind disturbances in the Tatra Mountains, central Europe — a dendroecological reconstruction. Canadian Journal of Forest Research39(11): 2215–2223.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91b26aa2-fe3b-452d-8911-afd76cc20c0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.