PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Test setup for examination of magneto-mechanical properties of magnetorheological elastomers with use of a novel approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an experimental setup aiming at evaluating the magneto-mechanical and damping properties of the thermoplastic magnetorheological elastomer (MRE). The idea of the system is to create controllable conditions similar to those present in a vehicles and other mechanical constructions and to make it possible to determine parameters only relating to the MRE material itself. The test stand is based on four samples stimulated with highly effective Halbach arrays. The upper plate of the test stand is excited with use of a modal shaker to assure a constant impact force value during each test. This enables control of impact character and allows automation of the test stand. The last section of this paper presents preliminary test conducted to find the resonance frequency dependence on the impact force of the system for a constant value of magnetic field. The results indicate non-linear behavior of the material and therefore exclude use of the simple Kelvin-Voight model based approach for damping properties determination, that is a commonly used model for description of different materials.
Rocznik
Strony
294--303
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanics, Materials Science and Engineering, Mechanical Faculty, Wrocław University of Technology, Smoluchowskiego 25 str., 50-372 Wrocław, Poland
autor
  • Department of Mechanics, Materials Science and Engineering, Mechanical Faculty, Wrocław University of Technology, Smoluchowskiego 25 str., 50-372 Wrocław, Poland
  • Department of Mechanics, Materials Science and Engineering, Mechanical Faculty, Wrocław University of Technology, Smoluchowskiego 25 str., 50-372 Wrocław, Poland
  • Department of Mechanics, Materials Science and Engineering, Mechanical Faculty, Wrocław University of Technology, Smoluchowskiego 25 str., 50-372 Wrocław, Poland
Bibliografia
  • [1] Z. Rigbi, L. Jilken, The response of an elastomer filled with soft ferrite to mechanical and magnetic influences, Journal of Magnetism and Magnetic Materials 37 (3) (1983) 267–276.
  • [2] Y. Li, J. Li, W. Li, H. Du, A state-of-the-art review on magnetorheological elastomer devices, Smart Materials and Structures 23 (2014), 123001 (24 pp.).
  • [3] G.V. Stepanov, S.S. Abramchuk, D.A. Grishin, L.V. Nikitin, E.Y. Kramarenko, A.R. Khokhlov, Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers, Polymer 48 (2) (2007) 488–495.
  • [4] J.L. Leblanc, Rubber-filler interactions and rheological properties in filled compounds, Progress in Polymer Science 27 (4) (2002) 627–687.
  • [5] J.D. Carlson, M.R. Jolly, Mr fluid, foam and elastomer devices, Mechatronics 10 (4-5) (2000) 555–569.
  • [6] M. Lokander, B. Stenberg, Performance of isotropic magnetorheological rubber materials, Polymer Testing 22 (3) (2003) 245–251.
  • [7] A.V. Chertovich, G.V. Stepanov, A.R. Kramarenko, E. Yu, Khokhlov, New composite elastomers with giant magnetic response, Macromolecular Materials and Engineering 295 (2010) 336–341.
  • [8] V.V. Sorokin, E. Ecker, G.V. Stepanov, M. Shamonin, G.J. Monkman, E.Y. Kramarenko, A.R. Khokhlov, Experimental study of the magnetic field enhanced payne effect in magnetorheological elastomers, Soft Matter 10 (2014) 8765– 8776.
  • [9] A. Gasperowicz, J. Kaleta, D. Lewandowski, P. Zając, Isotropic magnetorheological elastomers with thermoplastic matrices: structure, damping properties and testing, Smart Materials & Structures 19 (4) (2010) 1–7.
  • [10] M. Kallio, The elastic and damping properties of magnetorheological elastomers, VTT Technical Research Centre of Finland, 2005.
  • [11] J. Wu, X. Gong, Y. Fan, H. Xia, Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field, Smart Materials and Structures 19 (10) (2010) 105007.
  • [12] J. Kaleta, M. Królewicz, D. Lewandowski, Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices, Smart Materials & Structures 20 (8) (2011) 1–12.
  • [13] J. Kaleta, D. Lewandowski, P. Zając, Metal, Ceramic and Polymeric Composites for Various Uses, Ch. Smart magnetic composites, InTech, 2011, pp. 475–504.
  • [14] M.J. Ginder, M.E. Nichols, L.D. Elie, S.M. Clark, Controllable-stiffness components based on magnetorheological elastomers, in: Smart Structures and Materials 2000: Smart Structures and Integrated Systems, Vol. 103, 2000.
  • [15] M. Usman, S.H. Sung, D.D. Jang, H.J. Jung, J.H. Koo, Numerical investigation of smart base isolation system employing MR elastomer, Journal of Physics: Conference Series 149 (1) (2009) 012099.
  • [16] M. J. Ginder, W. F. Schlotter, M. E. Nichols, Magnetorheological elastomers in tunable vibration absorbers, in: Smart Structures and Materials 2001: Damping and Isolation, Vol. 418, 2001.
  • [17] H.X. Deng, X.L. Gong, L.H. Wang, Development of an adaptive tuned vibration absorber with magnetorheological elastomer, Smart Materials and Structures 15 (5) (2006) N111.
  • [18] Y.-K. Kim, J.H. Koo, K.-S. Kim, S. Kim, Developing a real time controlled adaptive MRE-based tunable vibration absorber system for a linear cryogenic cooler, in: ASME International Conference on Advanced Intelligent Mechatronics, 2011.
  • [19] C. Collette, G. Kroll, G. Saive, V. Guillemier, M. Avraam, On magnetorheologic elastomers for vibration isolation, damping and stress reduction in mass-varying structures, Journal of Intelligent Materials Systems and Structures 21 (2010) 1463–1469.
  • [20] Y. Li, J. Li, W. Li, T. Tian, A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control, Smart 22 (2013), 095020 (18 pp.).
  • [21] M. Behrooz, X. Wang, F. Gordaninejad, Modeling of a new semi-active/passive magnetorheological elastomer isolator, Smart Materials and Structures 23 (2014), 045013 (7 pp.).
  • [22] W. Li, X. Zhang, H. Du, Development and simulation evaluation of a magnetorheological elastomer isolator for seat vibration control, Journal of Intelligent Materials Systems and Structures 23 (2012) 22–39.
  • [23] A. Alberdi-Muniain, N. Gil-Negrete, L. Kari, Modelling energy flow through magneto-sensitive vibration isolators, International Journal of Engineering Science 65 (0) (2013) 22–39.
  • [24] A.A. Lerner, K.A. Cunefare, Performance of mre-based vibration absorbers, Journal of Intelligent Material Systems and Structures 19 (2008) 551–563.
  • [25] M. Bocian, J. Kaleta, D. Lewandowski, M. Przybylski, Test stand and method for determination of the usefulness of the magnetorheological composites in active suspension systems, Key Engineering Materials 598 (2014) 7–12.
  • [26] M. Bocian, J. Kaleta, D. Lewandowski, M. Przybylski, Design concept of test stand for determining properties of magnetorheological elastomer, Acta Mechanica et Automatica 7 (3) (2013) 131–134.
  • [27] M. Behrooz, X. Wang, F. Gordaninejad, Performance of a new magnetorheological elastomer isolation system, Smart Materials and Structures 23 (2014), 045014 (8 pp.).
  • [28] M. Przybylski, Testing magneto-mechanical properties of magnetorheological elastomers obtained with use of single degree of freedom test stand, Master's thesis, Wroclaw University of Technology, 2012.
  • [29] J. Tuma, A. Bilosova, J. Slimek, R. Svoboda, A simulation study of the rotor vibration in a journal bearing, Engineering Mechanics 15 (6) (2008) 461–470.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91b11025-4b84-4222-8ff6-d3e81c6650ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.