PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using the DDA (Discrete Dipole Approximation) Method in Determining the Extinction Cross Section of Black Carbon

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
BC (Black Carbon), which can be found in the atmosphere, is characterized by a large value of the imaginary part of the complex refractive index and, therefore, might have an impact on the global warming effect. To study the interaction of BC with light often computer simulations are used. One of the methods, which are capable of performing light scattering simulations by any shape, is DDA (Discrete Dipole Approximation). In this work its accuracy was estimated in respect to BC structures using the latest stable version of the ADDA (vr. 1.2) algorithm. As the reference algorithm the GMM (Generalized Multiparticle Mie-Solution) code was used. The study shows that the number of volume elements (dipoles) is the main parameter that defines the quality of results. However, they can be improved by a proper polarizability expression. The most accurate, and least time consuming, simulations were observed for IGT_SO. When an aggregate consists of particles composed of ca. 750 volume elements (dipoles), the averaged relative extinction error should not exceed ca. 4.5%.
Rocznik
Strony
153--164
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Wrocław University of Technology, Chair of Electronic and Photonic Metrology, Bolesława Prusa 53/55, 50-317 Wrocław, Poland
Bibliografia
  • [1] Bond, T.C. (2001). Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys. Res. Lett., 28(21), 4075-4078.
  • [2] Adachi, K., Buseck, P.R. (2008). Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmos. Chem. Phys., 8(21), 6469-6481.
  • [3] Adachi, K., Chung, S.H., Buseck P.R. (2010). Shapes of soot aerosol particles and implications for their effects on climate. J. Geophys. Res., 115(15), D15206.
  • [4] Yurkin, M.A., Hoekstra, A.G. (2007). The discrete dipole approximation: An overview and recent developments. J. Quant. Spectrosc. Radiat. Transf., 106(1), 558-589.
  • [5] Draine, B.T., Flatau, P.J. (1994). Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11(4), 1491-1499.
  • [6] Purcell, E.M., Pennypacker, C.R. (1973). Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J., 186, 705-714.
  • [7] Yurkin, M.A., Hoekstra, A.G. (2011). The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf., 112(13), 2234-2247.
  • [8] Xu, Y.-L, Gustafson, B.A.S. (2001). A generalized multiparticle mie-solution: further experimental verification. J. Quant. Spectrosc. Radiat. Transf., 15(4), 395-419.
  • [9] Mackowski, D.W., Mishchenko, M.I. (2011). A multiple sphere T-matrix FORTRAN code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transf., 112(13), 2182-2192.
  • [10] Bond, T.C., Bergstrom, R.W. (2006). Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol. Sci. Tech., 40(1), 27-67.
  • [11] Andreae, M.O., Galencser, A. (2006). Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6(10), 3131-3148.
  • [12] Wentzel, M., Gorzawski, H., Naumann, K.H., Saathoff, H., Weinbruch, S. (2003). Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J. Aerosol. Sci., 34(10), 1347-1370.
  • [13] Chaumet, P.C., Sentenac, A., Rahmani, A. (2004). Coupled dipole method for scatterers with large permittivity. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 70(32), 036606-1-036606-6.
  • [14] Yurkin, M.A, Min, M., Hoekstra, A.G. (2010). Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 82(3), 036703.
  • [15] Yurkin, M.A., De Kanter, D., Hoekstra, A.G. (2010). Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles. J. Nanophotonics, 4(1), 041585.
  • [16] Penttila, A., Zubko, E., Lumme, K., Muinonen, K., Yurkin, M.A., Draine, B., Rahola, J., Hoekstra, G., Shkuratov, Y. (2007). Comparison between discrete dipole implementations and exact techniques, J. Quant. Spectrosc. Radiat. Transf., 106(1), 417-436.
  • [17] Charalampopoulos, T.T., Chang H. (1990). Determination of the wavelength dependence of refractive indices of flame soot. Proc. Math. Phys. Sci., 430, 577-591.
  • [18] Riefler, N., Di Stasio, S., Wriedt, T. (2004). Structural analysis of clusters using configurational and orientational averaging in light scattering analysis. J. Quant. Spectrosc. Radiat. Transf., 89(1), 323-342.
  • [19] Piller, N.B., Martin, O.J.F. (1998). Increasing the Performance of the Coupled-Dipole Approximation: A Spectral Approach. IEEE Trans. Antennas Propag., 46(8), 1126-1137.
  • [20] Hess, M., Koepke, P., Schult, I. (1998). Optical properties of aerosols and clouds: The software package OPAC. B. Am. Meteorol. Soc., 79(5), 831-844.
  • [21] Filippov, A.V., Zurita M., Rosner D.E. (2000). Fractal-like aggregates: Relation between morphology and physical properties. J. Colloid Interface Sci., 229(1), 261-273.
  • [22] Skorupski, K., Mroczka, J., Wriedt, T., Riefler, N. (2014). A fast and accurate implementation of tunable algorithms used for generation of fractal-like aggregate models. Physica A, 404, 106-117.
  • [23] Van Poppel, L.H., Friedrich, H., Spinsby, J., Chung S.H., Seinfeld J.H., Buseck P.R. (2005). Electron tomography of nanoparticle clusters: Implications for atmospheric lifetimes and radiative forcing of soot. Geophys. Res. Lett., 32(24), 1-4.
  • [24] Mroczka, J., Wozniak, M., Onofri, F.R.A. (2012). Algorithms and methods for analysis of the optical structure factor of fractal aggregates. Metrol. Meas. Syst., 19(3), 459-470.
  • [25] Wozniak, M., Onofri, F.R.A., Barbosa, S., Yon, J., Mroczka, J. (2012). Comparison of methods to derive morphological parameters of multi-fractal samples of particle aggregates from TEM images. J. Aerosol Sci., 47, 12-26.
  • [26] Mroczka, J., Szczuczynski, D. (2013). Improved technique of retrieving particle size distribution from angular scattering measurements. J. Quant. Spectrosc. Radiat. Transf., 129, 48-59.
  • [27] Wriedt, T., Hellmers, J., Eremina, E., Schuh, R. (2006). Light scattering by single erythrocyte: Comparison of different methods. J. Quant. Spectrosc. Radiat. Transf., 100(1), 444-456.
  • [28] Nilsson, A.M.K., Alsholm P., Karlsson A., Andersson-Engels S. (1998). T-matrix computations of light scattering by red blood cells. Appl. Optics, 37(13), 2735-2748.
  • [29] Mroczka, J., Wysoczanski, D. (2000). Plane-wave and Gaussian-beam scattering on an infinite cylinder. Opt. Eng., 39(3), 763-770.
  • [30] Girasole, T., Gouesbet, G., Grehan, G., Le Toulouzan, J.N., Mroczka, J., Ren, K.F., Wysoczanski, D. (1997). Cylindrical fibre orientation analysis by light scattering. Part 2: Experimental aspects. Part. Part. Syst. Char, 14(5), 211-218.
  • [31] Girasole, T., Bultynck, H., Gouesbet, G., Grehan, G., Le Meur, F., Le Toulouzan, J.N., Mroczka, J., Wysoczanski, D. (1997). Cylindrical fibre orientation analysis by light scattering. Part 1: Numerical aspects. Part. Part. Syst. Char., 14(4), 163-174.
  • [32] Girasole, T., Le Toulouzan, J.N., Mroczka, J., Wysoczanski D. (1997). Fiber orientation and concentration analysis by light scattering: Experimental setup and diagnosis. Rev. Sci. Instrum., 68(7), 2805-2811.
  • [33] Skorupski, K., Mroczka, J. (2014). Effect of the necking phenomenon on the optical properties of soot particles. J. Quant. Spectrosc. Radiat. Transf., 141, 40-48.
  • [34] Skorupski, K., Mroczka, J., Riefler, N., Oltmann, H., Will, S., Wriedt, T. Impact of morphological parameters onto simulated light scattering patterns (2013). J. Quant. Spectrosc. Radiat. Transf., 119, 53-66.
  • [35] Mroczka, J. (2013). The cognitive process in metrology. Measurement, 46(8), 2896-2907.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91a90fe9-0a61-4560-bd9b-29b77cfd2bc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.