PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Alloying Additions on High Temperature Interaction Between Molten Compacted Graphite Iron and Alumina

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High temperature behavior of three compacted graphite iron (CGi) alloys on polycrystalline aluminasubstrates (99.7%, porosity <3%) were examined by the sessile drop method combined with classical contact heating procedure in flowing Ar. High-speed high-resolution CCd camera was used for continuous recording of the CGi/Al2 O3 couples during melting alloy, heating to and holding the couples at the test temperature of 1450°C for 15 min and their subsequent cooling. The comparative studies were made with conventional CGi (in wt.%: 3.70 C, 2.30 Si, 0.44 Mn, 0.054 P, 0.017 Mg, 0.015 S) and two alloys additionally containing the same amounts of 0.25 Mo, 0.1 V, 0.045 Sn and 0.032 Sb with different concentrations of Mg + Cu additions, i.e. 0.01Mg + 0.33Cu and 0.02Mg + 0.83Cu. All three CGi alloys demonstrated non-wetting behavior on the Al2 O3 substrates while the contact angle values slightly decreased with increase of the Mg + Cu content in the alloy, i.e. 131° (unalloyed CGi), 130° (0.01Mg + 0.33Cu) and 125° (0.02Mg + 0.83Cu). Structural characterization of solidified couples by light microscopy and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy revealed: 1) heterogeneous nucleation of discontinuous graphite layer at the drop-side interfaces and on the surface of the drops; 2) reactively formed Mg-rich oxide layer at the substrate-side interface; 3) the formation of satellite droplets on the surface of the drops during their solidification; 4) degeneration of initially compacted graphite to lamellar graphite after remelting and subsequent solidification of the drops, particularly in their surface layer.
Twórcy
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków, Poland
  • Lukasiewicz Research Network – Institute of Precision Mechanics, 3 Duchnicka Str., 01-796 Warsaw, Poland
autor
  • University of Agriculture in Krakow, Department of Physics, A. Mickiewicza Av. 21, 31-120 Kraków, Poland
autor
  • Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Kraków, Poland
autor
  • Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Kraków, Poland
autor
  • Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
Bibliografia
  • [1] D. M. Stefanescu, A histrory of cast iron, in: ASM Handbook, ASM Handbook, vol. 1A Cast iron Science and Technology, ASM international (2017).
  • [2] E. Nechtelberger, H. Puhr, J. B. Nesselrode, A. Nakayasu, Cast iron with vermicular/compacted graphite - state of the art. development, production, applications, in: Proc. 49th international Foundry Congress, Chicago, USA, CIATF (1982).
  • [3] H. Qiu, Z. Chen, China Foundry 4, 261-269 (2007).
  • [4] M. Holtzer, M. Górny, T. Dańko, Microstructure and properties of ductile iron and Compacted Graphite iron Castings. The effects of Mold Sand/Metal interface Phenomena. Springer Briefs in Materials (2015).
  • [5] M. A. Suhaimi, K. H. Park, S. Sharif, D.W. Kim, A. S. Mohruni, evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron, in: MATEC web of Conferences, EDP Sciences, 101, 03016, SINCEST (2016).
  • [6] S. Dawson, Compacted graphite cast iron - a material solution for modern diesel engine cylinder blocks and heads, in: Proc. 68th Word Foundry Congress, Chennai, India, The institute of Indian Foundrymen (2008).
  • [7] J. D. Altstetter, R. M. Nowicki, Trans. AFS 82-188, 959-970 (1982).
  • [8] Y. Tanaka, H. Saito, K. Ikawa, J. Japan Foundrymen’s Soc. 53 (4), 187-192 (1981).
  • [9] R. W. Gregorutti, J. E. Gru, Int. J. Cast. Metal. Res. 27 (5), 275-281 (2014).
  • [10] E. Guzik, S. Dzik, Archives Foundry Eng. 9 (1), 175-180 (2009).
  • [11] P. V. Palmer, Foundry Trade Metals 32223, 574-580 (1981).
  • [12] P. Ponicky, P. Socovsky, Liatiny s cervikovitym grafitom begowane cinom a medou, Slevarenstvi 6 (1988).
  • [13] A. Pytel, K. Sękowski, Perlitic vermicular graphite cast iron, in: M.S.J. Hashimi and L. Looney (eds.) Proc. Int. Conf. Advances in Materials and Processing Technologies, AMPT’99 and 16th Ann. Conf. of the irish Manufacturing Committee, IMC16, vol. III, Dublin City University (1998).
  • [14] I. Riposan, M. Chisamera, Legierte Gusseisen mit Vermicular-graphit. Giesserei-Praxis 11, 161-173 (1985).
  • [15] E. Guzik, Archiwum Odlewnictwa 6 (21/1), 33-42 (2006).
  • [16] G. I. Sil’man, V. A. Teikh, G. S. Sosnovskaya, Litein. Proizv. 10, 8-9 (1975).
  • [17] G. I. Sil’man, V. V. Kamynin, A. A. Tarasov, Met. Sci. Heat Treat. 45, 7-8 (2003).
  • [18] A. De Sy, Giesserei 2, 25-32 (1964).
  • [19] B. Bihari, R. Kumar, A. K. Singh, Int. J. Eng. Res. Techn. 3 (5), 81-84 (2014).
  • [20] A. I. Fedyanin, Effect Of Heat Treatment On The Structural, Mechanical, And Antifriction Properties Of AChS-5 Cast Iron, In: Metal Science And Heat Treatment, KPI, Kalinin (1976).
  • [21] D. M. Stefanescu, L. Dinescu, S. Craciun, M. Popescu, Production of vermicular graphite cast iron by operative control and correction of graphite shape, in: Proc. 46th Int. Foundry Congress, CIATF Madrid, Spain (1979).
  • [22] H. Itofuji, Y. Kawano, N. Inoyama, S. Yamamoto, B. Chang, T. Nishi, The formation mechanism of compacted/vermicular graphite in cast irons, AFS Transactions 91, 831-840 (1983).
  • [23] I. Riposan, M. Chisamera, C. Stan, C. Hartung, D. White, Mater. Sci. Techn. 26 (12), 1439-1447 (2010).
  • [24] D. M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, Acta Mater. 107, 102-126 (2016).
  • [25] D. M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, Acta Mater. 139, 109-121 (2017).
  • [26] D. M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, int. J. Metalcast. 12,722-752 (2018).
  • [27] De A. Vicente, J. R. Sartori Moreno, T. F. De A. Santos, D. C. R., Espinosa, J. A. S. Tenório, J. Alloy Comp. 775, 1230-1234 (2019).
  • [28] G. Alonso, D. M. Stefanescu, P. Larrañaga, R. Suarez, Int. J. Metalcast. (2020) https://doi.org/10.1007/s40962-020-00441-2
  • [29] G. Alonso, D. M. Stefanescu, R. Suárez, A. Loizaga, G. Zarrabeitia, Int. Foundry Res. 66 (4), 2-12 (2014).
  • [30] Tadesse, H. Fredriksson, Int. J. Cast Metals Res. 30 (3), 159-170 (2017).
  • [31] R. M. Hathaway, P. Rohatgi, N. Sobczak, J. Sobczak, Ferrous composites: a review, in: N. Eustathopoulos, N. Sobczak (eds.), Proc. 2nd Int. Conf. High Temperature Capillarity, 1997, Cracow, Poland, Foundry Research Institute (1998).
  • [32] M. Bay, Y. Su, S-W. Gong, Preparation and properties of high chromium cast iron matrix composites reinforced by zirconium corundum particles, in: Proc. 2nd Int. Conf. Test, Measurement and Computational Method (TMCM-2017), 365-369 (2017).
  • [33] N. Dulska, A. Studnicki, J. Szajnar, reinforcing cast iron with composite insert, Arch. Metall. Met. 62 (1), 355-357 (2017).
  • [34] N. Sobczak, M. Singh, R. Asthana, Curr. Opin. Solid St. Mater. Sci. 9, 241-253 (2005).
  • [35] Y. A. Kiyachko, L. L. Kunin, Zhurnal Prikladnoy Khimii 22 (7), 707-715 (1947) (in russian).
  • [36] S. I. Popel, Wetting of refractory materials with molten metal and slag, in: Foundry Theory and Practice Masbgiz, Sverdlovsk, (1959) (in russian).
  • [37] N. V. Pitak, R. M. Fedoruk, R. S. Shulyak, T. P. Khmelenko, Refractories 19 (5-6), 301-304 (1978).
  • [38] M. Bacior, N. Sobczak, M. Homa, P. Turalska, A. Kudyba, G. Bruzda, R. Nowak, A. Pytel, Trans. Found. Res. Inst. 4, 375-384 (2017).
  • [39] N. Sobczak, J. J. Sobczak, M. Kolev, L. Drenchev, P. Turalska, M. Homa, A. Kudyba, G. Bruzda, J. Mater. Eng. Perf. 29, 2499-2505 (2020).
  • [40] M. Homa, N. Sobczak, P. Turalska, G. Bruzda, M. Bacior, M. Warmuzek, A. Polkowska, Trans. Found. Res. Inst. LVII (4), 345-350 (2017).
  • [41] N. Sobczak, R. Nowak, W. Radziwiłł, J. Budzioch, A. Glenz, Mater. Sci. Eng. 495 (1-2), 43-49 (2008).
  • [42] N. Sobczak, J. Sobczak, R. Asthana, R. Purgert, China Foundry 7 (4), 425-437 (2010).
  • [43] ASTRA Reference Book, IENI, Report, Oct. 2007.
  • [44] L. Liggieri, A. Passerone, High Temp. Techn. 7 (2), 80-86 (1989).
  • [45] H. Fujii, S. Izutani, T. Matsumoto, S. Kiguchi, K. Nogi, Mater. Sci. Eng. A 417 (1-2), 99-103 (2006).
  • [46] K. Kondoh, M. Kawakami, H. Imai, J. Umeda, H. Fujii, H. Acta Mater. 58 (2), 606-614 (2010).
Uwagi
EN
2. Movie 1: The online version of this article contains supplementary material, which is available to authorized users. It presents the movie of the sessile drop test performed with two CGi/alumina couples simultaneously using 2 in1 procedure (left – CGi-2; right – CGi-1).
PL
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91a0a994-f572-41d6-9baa-acb5334f4c1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.