PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forecasting the Productivity of the Agrophytocenoses of the Miscanthus Giganteus for the Fertilization Based on the Wastewater Sedimentation Using Artificial Neural Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The observations of plant development were carried out for three years. The most desirable period for harvesting the miscanthus is December. During this period, the humidity of the stems decreases to 17%. For this reason, the samples for laboratory tests were taken in December. According to the obtained research data, the sewage sludge used is characterized by the following indicators: humidity – 76%, ash content – 5%, nitrogen – 0.66%, P2 O5 – 2.51%, K2O v 2.16%. In this study, a mathematical model which allowed predicting the yield of the miscanthus at given levels, with the introduction of the mineral and organic (sewage sludge) fertilizers was successfully implemented. According to the performed research, the application of a sewage sludge in norm of 20–40 t/ha promotes the productivity of the power cultures (the miscanthus) within 24.5–27.1 t/ha, thus increasing productivity on 2.3–5.1 t/ha, compared with control.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 15, Kyiv, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Vulytsya Karpats’ka 15, Ivano-Frankivsk, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Vulytsya Karpats’ka 15, Ivano-Frankivsk, Ukraine
  • Kyiv National Economic University named after Vadym Hetman, Peremohy Ave 54/1, Kyiv, Ukraine
Bibliografia
  • 1. AEBIOM 2017. Statistical Report. European Bioenergy Outluk. Calderon C., Gauthier G., Jossart J.-M. et al. (Eds.) Brussels: European Biomass Association (AEBIOM), p. 264. Access: http://www.aebiom.org/statistical-report-2017/statistical-report-2017-17-10
  • 2. Alexopoulou E., Eleftheriadis I. 2010-2012 Role of 4F cropping in determining future biomass potentials, including sustainability and policy related issues. Biomass Department of CRES, p. 8. http://www.biomassfutures.eu/public_docs/final_deliverables/WP3/D3.2%20Role%20 of%204F%20crops.pdf
  • 3. Cherubini F. and Strømman A.H. 2011. Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource Technology, 102(2), 437-451.
  • 4. Commission Staff Working Document 2014. State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in the EU. Brussels, SWD (2014) 259 final.
  • 5. Dagli, C.H. (Ed.). 2012. Artificial neural networks for intelligent manufacturing. Springer Science & Business Media.
  • 6. Directive 2009 EC of the European Parliament and of the Council of 23.04.2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/ EC
  • 7. Dondini M., Hastings A., Saiz G. et al. 2009 The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. Global Change Biology Bioenergy, 1–6, 413–425.
  • 8. Fantozzi F. and Buratti C. 2010. Life cycle assessment of biomass chains: Wood pellet from short rotation coppice data measured on a real plant. Biomass and Bioenergy, 34, 1796-1804.
  • 9. Felten D., Fröba N., Fries J., Emmerling C. 2012. Energy Balances and Greenhouse Gas Mitigation Potentials of Bioenergy Cropping Systems (Miscanthus, Rapeseed, and Maize) based on Farming Conditions in Western Germany. Renewable Energy, 55, 160–174. https://doi.org/10.1016/j.renene.2012.12.004
  • 10. Grytsulyak G. and Lopushniak V. 2016. Impact of sewage sludge application on the humus state of sod-podzolic soil of subcarpathia under energetic willow plantation. Agricultural Science and Practice, 2, 26–32. https://doi.org/10.15407/agrisp
  • 11. Heller, M., Keoleian, G., Volk, T. 2003. Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenergy, 25, 147–65.
  • 12. Heaton E. and Giant 2010. Miscanthus for biomass production. Biomass: miscanthus. AG201, 1-2.
  • 13. Karlik B. and Olgac A.V. 2011. Performance analysis of various activation functions in generalized MLP architectures of neural networks. International Journal of Artificial Intelligence and Expert Systems, 1(4), 111-122.
  • 14. Lopushniak V. and Hrytsuliak H. 2020. Environmental soil conditions for entering sewage sludge under energy crops Proceedings of the XXII International Scientific and Practical Conference/ International Trends in Science and Technology. Vol. 1. Warsaw, Poland. 57-60.
  • 15. Lopushniak V.I., Yakubovskyi T., Shpik N.R., Hrytsuliak H.M., 2018. The ecological model of the reclamation of the degraded sod-podzolic soils of the Precarpathian region. Scientists of Lviv National Agrarian University in production: a catalog of the innovative developments. 18 edition. Lviv: Lviv National Agrarian University, 7-8.
  • 16. Miscanthus agronomy (for fuel and industrial uses): final project report NF0403. Ministry of agriculture, fisheries and food. Great Britain, 1999. Access: www.ienica.net/usefulreports/miscanannex.pdf
  • 17. Miscanthus, its place in uk agriculture and farming: UK Agriculture. United Kingdom. Access: www.ukagriculture.com/crops/miscanthus.cfm.
  • 18. Nussbaumer T. 2004. Evaluation of Biomass Combustion based Energy Systems by Cumulative Energy Demand and Energy Yield Coefficient. – Zurich: Verenum press. 47 p. Report to International Energy Agency IEA Bioenergy Task 32 and Swiss Federal Office of Energy. Access: http://task32.ieabioenergy.com/wp-content/uploads/2017/03/Nussbaumer_IEA_CED_V11.pdf .
  • 19. Nussbaumer T. and Oser M. 2004. Evaluation of biomass combustion based energy systems by cumulative energy demand and energy yield coefficient. Report for International Energy Agency and Swiss Federal Office of Energy, http://www.iea-bcc.nl/publications/Nussbaumer_IEA_CED_ V11.pdf
  • 20. Proposal for a Directive of the European Parliament and the Council on the promotion of the use of energy from renewable sources (recast). Brussels, 23.2.2017, COM (2016) 767 final/2. Mode of access: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52016PC0767R(01)
  • 21. Rojas R. 2013. Neural networks: a systematic introduction. Springer Science & Business Media. Report from the Commission to the Council and the European Parliament on sustainability requirements for the use of solid and gaseous biomass sources in electricity, heating and cooling. Brussels, 25.2.2010. COM(2010. http://eur-lex.europa.eu/legal- content/EN/TXT/?qid=1410874845626&uri=CELEX:5201 0DC0011
  • 22. Roik M.V., Kurilo V. L, Ganzhenko O.M, Gumenyk M.Ya. 2012. Prospects for the development of bioenergy in Ukraine. Sugar Beets, 2-3, 6–8
  • 23.Rokitova O. 2010. The energy biofuel crops: the miscanthus - pros and cons. International Bioenergy, 2010. http://www.infobio.ru/analytics/ 385.html.
  • 24. Saleha Almardeai, Juan-Rodrigo Bastidas-Oyanedel, Sabeera Haris, Jens Ejbye Schmidt, 2017. Avicennia marina biomass characterization towards bioproducts Emirates Journal of Food and Agriculture, 29(9), 710-715.
  • 25. Haykin S. 2009. Neural networks and learning machines. Pearson Education. Upper Saddle River, NJ. 33–35.
  • 26. Specht, D.F. 1990. Probabilistic neural networks. Neural Networks, 3(1), 109–118.
  • 27.Ramlia S., Radub S., Shaaric K., Rukayadib Y. 2020. Toxicity analysis of Syzygium polyanthum (Wight) Walp. leaves extract and its stability against different pH and temperature Emirates Journal of Food and Agriculture, 32(6), 461-468
  • 28. Tryboi O.V. 2018. Efficient biomass value chains for heat production from energy crops in Ukraine. Energetika, 64(2), 84–92.
  • 29. Vambol S., Vambol V., Sobyna V., Koloskov V., Poberezhna L. 2018. Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures, 64(4), 186–195.
  • 30. Wagner M., Kiesel A., Hastings A., Iqbal Ya., Lewandovski I. 2017. Novel Miscanthus ger-mplasmbased value chains: a life cycle assess- ment. Frontiers in Plant Science, 8, Article 990, 1–18.
  • 31. Xuejiao Ren, Jiabin Ci, Liangyu Jiang, Weiguang Yang, Wei Yang, 2018. Effects of physicochemical properties of different substrates on characters and yield of maize Emirates Journal of Food and Agriculture, 30(10), 851-862.
  • 32. Leal Y.H., de Oliveira Sousa V.F., Dias T.J. 2020. Edaphic respiration in bell pepper cultivation under biological fertilizers, doses and application times. Emirates Journal of Food and Agriculture, 32(6), 434-442.
  • 33. Zinchenko V. and Yashin M. 2011. The energy of the miscanthus. LesPromInform, 6(80). http://lesprominform.ru/jarchive/articles/itemshow/2409
  • 34. Zheliezna T.A. and Drozdova O.I. 2014. Kompleksnyj analiz tehnologij proizvodstva jenergii iz tverdoj biomassy v Ukraine. Teploenergetika, 4, 16–20.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-919f0930-b7d5-4be6-a2eb-b3fc161349fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.