PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crack damage evolution in concrete coarse aggregates under microwave‑induced thermal stress

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coarse aggregates of waste concrete can be efficiently separated from mortar under microwave irradiation. However, the microwave-induced damage in aggregates are restricting mechanical properties of the aggregates for replacing natural aggregates. Since damage evolution in rocks treated by microwave are influenced by mineralogy and microwave operating parameters, such as power and irradiation time, understanding the microwave weakening mechanism of rocks is necessary to assess and control the damage of aggregates for recovery of high-quality concrete coarse aggregates. This article develops an approach for evaluating crack damage evolution in aggregates exposed to microwave by combining theoretical analysis with experimental investigation. A theoretical heat source-matrix model based on electromagnetic and thermal properties of mineral components is established for microwave heated aggregates. Substituting microwave irradiating parameters and mineralogy of the aggregates into the model, corresponding temperature fields and thermal stress fields are solved. Cracks in aggregates after microwave exposure are observed using scanning electron microscopy (SEM) and quantified in terms of crack length, density and intensity. Crack damage varied with microwave energy is assessed by crack length and density. Crack propagation is further discussed by contrast of stress intensity factor (SIF) at the crack tip and fracture toughness of the aggregate. Cracking behavior analyzed by SIF of cracks is consistent with that obtained from quantitative analysis on SEM images. The results suggest that granite shows a stronger resistance to thermal stress damage compared with basalt under microwave exposure, and a multistage microwave treatment should be adopted for recovery of various aggregates.
Rocznik
Strony
art. no. e108
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
  • School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Postdoctoral Station of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Bibliografia
  • 1. Brito JD, Kurda R. The past and future of sustainable concrete: a critical review and new strategies on cement-based materials. J Clean Prod. 2020;281(8):123558.
  • 2. Tam V, Soomro M, Evangelista A. Quality improvement of recycled concrete aggregate by removal of residual mortar: A comprehensive review of approaches adopted. Constr Build Mater. 1940;2021(288):123066.
  • 3. Kabirifar K, Mojtahedi M, Wang C, et al. Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: a review. J Clean Prod. 2020;2:121265.
  • 4. Akhtar A, Sarmah AK. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J Clean Prod. 2018;186:262-81.
  • 5. Velay-Lizancos M, Martinez-Lage I, Vazquez-Burgo P. The effect of recycled aggregates on the accuracy of the maturity method on vibrated and self-compacting concretes. Arch Civ Mech Eng. 2019;19(2):311-21.
  • 6. Verian KP, Ashraf W, Cao Y. Properties of recycled concrete aggregate and their influence in new concrete production. Resour Conserv Recycl. 2018;133:30-49.
  • 7. Butler L, West JS, Tighe SL. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem Concr Res. 2011;41(10):1037-49.
  • 8. Long L, Xuan D, Sojobi AO, et al. Development of nano-silica treatment methods to enhance recycled aggregate concrete. Cem Concrete Compos. 2021;118(6):103963.
  • 9. Otsuki N, Miyazato SI, Yodsudjai W. Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. J Mater Civ Eng. 2003;15(5):443-51.
  • 10. Lippiatt N, Bourgeois F. Investigation of microwave-assisted concrete recycling using single-particle testing. Miner Eng. 2012;31:71-81.
  • 11. Bru K, Touze S, Bourgeois F, et al. Assessment of a microwave-assisted recycling process for the recovery of high-quality aggregates from concrete waste. Int J Miner Process. 2014;126:90-8.
  • 12. Buttress AJ, Katrib J, Jones DA, et al. Towards large scale microwave treatment of ores: Part 1-Basis of design, construction and commissioning. Miner Eng. 2017;109:169-83.
  • 13. Akbarnezhad A, Ong K, Zhang MH, et al. Microwave-assisted beneficiation of recycled concrete aggregates. Constr Build Mater. 2011;25(8):3469-79.
  • 14. Wang P, Gao N, Ji K, et al. DEM analysis on the role of aggregates on concrete strength. Comput Geotech. 2020;119:103290.
  • 15. Lovas M, Kovačova M, Dimitrakis G, et al. Modeling of microwave heating of andesite and minerals. Int J Heat Mass Transf. 2010;53(17-18):3387-93.
  • 16. Teimoori K, Cooper R. Multiphysics study of microwave irradiation effects on rock breakage system. Int J Rock Mech Mining Sci. 2021;140:104586.
  • 17. Trigos L, Escavy JI, Gallego J, et al. Natural factors related to the differential heating of aggregates exposed to microwaves. Constr Build Mater. 2022;314:125654.
  • 18. Qiao R, Shao ZS, Yuan Y, et al. An analysis model for the temperature and residual stress of tunnel liner exposed to fire. Arch Civil Mech Eng. 2021;44:4807-18.
  • 19. Wu K, Shao Z, Qin S. An analytical design method for ductile support structures in squeezing tunnels. Arch Civil Mech Eng. 2020;20(3):91.
  • 20. Jones DA, Kingman SW, Whittles DN, et al. Understanding microwave assisted breakage. Miner Eng. 2005;18:659-69.
  • 21. Wang Y, Djordjevic N. Thermal stress FEM analysis of rock with microwave energy. Int J Miner Process. 2014;130:74-81.
  • 22. Toifl M, Hartlieb P, Meisels R, et al. Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite[J]. Miner Eng. 2017;103:78-92.
  • 23. Wang S, Xu Y, Xia K, et al. Dynamic fragmentation of microwave irradiated rock. J Rock Mech Geotech Eng. 2021;13:300-10.
  • 24. Li X, Wang S, Xu Y, et al. Effect of microwave irradiation on dynamic mode-I fracture parameters of Barre granite. Eng Fract Mech. 2020;224:106748.
  • 25. Zhou X, Li G, Ma H. Real-time experiment investigations on the coupled thermomechanical and cracking behaviors in granite containing three pre-existing fissures. Eng Fract Mech. 2019;224:106797.
  • 26. Yao J, Tao M, Zhao R, et al. Effect of microwave treatment on thermal properties and structural degradation of red sandstone in rock excavation. Miner Eng. 2021;162(8):106730.
  • 27. Nicco M, Holley EA, Hartlieb P, et al. Textural and mineralogical controls on microwave-induced cracking in granites. Rock Mech Rock Eng. 2020;53(10):4745-65.
  • 28. Li X, Shao Z. Investigation of macroscopic brittle creep failure caused by microcrack growth under step loading and unloading in rocks. Rock Mech Rock Eng. 2016;49(7):2581-93.
  • 29. Fan L, Gao J, Du X, et al. Spatial gradient distributions of thermal shock-induced damage to granite. J Rock Mech Geotech Eng. 2020;12:917-26.
  • 30. Yuan Y, Shao Z, Qiao R, et al. Fracture behavior of concrete coarse aggregates under microwave irradiation influenced by mineral components. Constr Build Mater. 2021;286:122944.
  • 31. Yuan Y, Shao Z, Qiao R, et al. Thermal response and crack propagation of mineral components in olivine basalt under microwave irradiation. Arab J Geosci. 2020;13:589.
  • 32. Makul N, Rattanadecho P, Agrawal DK. Microwave curing at an operating frequency of 2.45 GHz of Portland cement paste at early-stage using a multi-mode cavity: experimental and numerical analysis on heat transfer characteristics. Int Commun Heat Mass Transfer. 2010;37(10):1487-95.
  • 33. Griffiths DJ. Introduction to electrodynamics. 3rd ed. New Jersey: Prentice Hall; 1999.
  • 34. Nelson SO, Lindroth DP, Blake RL. Dielectric properties of selected minerals at 1 to 22 GHz. Geophysics. 1989;54(10):1344-9.
  • 35. Zheng Y, Wang S, Feng J, et al. Measurement of the complex permittivity of dry rocks and minerals: application of polythene dilution method and Lichtenecker’s mixture formulae. Geophys J Int. 2005;163(3):1195-202.
  • 36. Zheng YL, Zhao XB, Zhao QH, et al. Dielectric properties of hard rock minerals and implications for microwave-assisted rock fracturing. Geomech Geophys Geo-Energy Geo-Resour. 2020;6:22.
  • 37. Metaxas AC, Meredith RJ. Industrial microwave heating. London: Peter Peregrinus; 1983.
  • 38. Fan LF, Wu ZJ, Wan Z, et al. Experimental investigation of thermal effects on dynamic behavior of granite. Appl Therm Eng. 2017;125:94-103.
  • 39. Yang SQ, Ranjith PG, Jing HW, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics. 2017;65:180-97.
  • 40. Zuo JP, Wang JT, Sun YJ, et al. Effects of thermal treatment on fracture characteristics of granite from Beishan, a possible high-level radioactive waste disposal site in China. Eng Fract Mech. 2017;65:180-97.
  • 41. Carslaw HS, Jaeger JC. The flow of heat in a sphere and cone. In: Conduction of heat in solids. 2nd ed. London: Oxford University Press; 1959. p. 230.
  • 42. Yuan Y, Shao Z, Qiao R, et al. Quantifying damage evolution within olivine basalt based on crack propagation behavior under microwave irradiation. Int J Damage Mech. 2021;30(10):1617-41.
  • 43. Shao ZS, Ma GW. Thermo-mechanical stresses in functionally graded circular hollow cylinder with linearly increasing boundary temperature. Compos Struct. 2008;83:259-65.
  • 44. Timoshenko S, Goodier JN. Thermal stress. In: Theory of etasticity. 2nd ed. New York: McGraw-Hill Book Co.; 1951. p. 416-8.
  • 45. Sheng C. Westergaard’s stress function method. In: Fracture mechanics. Shanghai: Tongji Press; 1996. p. 40-52.
  • 46. Toifl M, Meisels R, Hartlieb P, et al. 3D numerical study on microwave induced stresses in inhomogeneous hard rocks. Miner Eng. 2016;90:29-42.
  • 47. Touloukian YS, Judd WR, Roy RF. Physical properties of rocks and minerals. New York: McGraw Hill; 1989. p. 257-330.
  • 48. Ali AY, Bradshaw SM. Quantifying damage around grain boundaries in microwave treated ores. Chem Eng Process. 2009;48(11-12):1566-73.
  • 49. Carpenter MA, Salje EKH, Graeme-Barber A, et al. Calibration of excess thermodynamic properties and elastic constant variations associated with the alpha-beta phase transition in quartz. Am Miner. 1998;83:2-22.
  • 50. Hartlieb P, Leindl M, Kuchar F, et al. Damage of basalt induced by microwave irradiation. Miner Eng. 2012;31:82-9.
  • 51. Blair BE. Physical properties of mine rock. Washington: U. S. B. M. R. I; 1955.
  • 52. Rożański A, Rożańska A, Sobotka M, et al. Identification of changes in mechanical properties of sandstone subjected to high temperature: meso-and micro-scale testing and analysis. Arch Civ Mech Eng. 2021;21:28.
  • 53. Fujii Y, Takemura T, Takahashi M, et al. Surface features of uniaxial tensile fractures and their relation to rock anisotropy in Inada granite. Int J Rock Mech Min Sci. 2007;44(1):98-107.
  • 54. Healy D, Rizzo RE, Cornwell DG, et al. FracPaQ: A MATLAB toolbox for the quantification of fracture patterns. J Struct Geol. 2016;95:1-16.
  • 55. Mauldon M, Dunne WM, Rohrbaugh MB. Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. J Struct Geol. 2001;23(2-3):247-58.
  • 56. Nejati H. Analysis of physical properties and thermo – mechanical induced fractures of rocks subjected to microwave radiation. Dissertation, McGill University, 2014.
  • 57. Nasseri MHB, Schubnel A, Young RP. Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int J Rock Mech Min Sci. 2007;44(4):601-16.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-919db253-eda0-44d7-a0a9-3412cc56285b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.