PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stress concentration at load-carrying fillet welded cruciform joints subjected to tensile and bending loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents numerical finite element method (FEM) analysis of the stress concentration at toes and crack-like faults in load-carrying fillet welded cruciform joints with transversal slits resulting from non-fused root faces. Potential fatigue damage of such joints subjected to cyclic tensile and bending loads appears in the form of fatigue cracks starting from the weld roots or toes. The aim of this article is to find qualitative and quantitative relationships between geometrical parameters of the load-carrying fillet welded cruciform joint subjected to tensile and bending loads and the stress concentration at weld toes and roots. The results of the analysis represented by the stress concentration factors (SCFs) and the stress intensity factors KI and KII are shown in the form of tables, graphs and mathematical formulas, which may be applied for fatigue assessment of such joints.
Rocznik
Strony
245--250
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
  • 1. Chattopadhyay A, Glinka G, El-Zein M, Qian J, Formas R. (2011), Stress analysis and fatigue of welded structures, Weld World, 55(7–8), 2–21.
  • 2. Chung HY., Liu SH., Lin RS., Ju SH. (2008), Assessment of stress intensity factors for load-carrying fillet welded cruciform joints using a digital camera, Int. Journal of Fatigue, 30(10–11), 1861-1872.
  • 3. Dong P. (2001), A structural stress definition and numerical implementation for fatigue analysis of welded joints, Int. Journal of Fatigue, 23(10), 865–876.
  • 4. European Committee for Standardization (CES) (2005), Eurocode 3: Design of steel structures - Part 1–9, Fatigue, Brussels: CES; EN 1993-1-9:2005.
  • 5. Fayard JL., Bignonnet A. and Dang Van K. (1996), Fatigue design criteria for welded structures, Fatigue Fracture Eng. Materials & Structures, 19(6), 723–729.
  • 6. Fricke W. (2012), IIW Recommendations for the Fatigue Assessment of Welded Structures by Notch Stress Analysis: IIW2006-09, Woodhead Publishing Series in Welding and Other Joining Technologies, 2-41.
  • 7. Fricke, W. (2013), IIW guideline for the assessment of weld root fatigue, Weld World, 57, 753.
  • 8. Hobbacher A.F. (2009), The new IIW recommendations for fatigue assessment of welded joints and components – A comprehensive code recently updated, International Journal of Fatigue, 31, 50–58.
  • 9. Iida K., Uemura T., (1996), Stress concentration factor formulas widely used in Japan, Fatigue Fract Eng Mater Struct., 19(6), 779– 786.
  • 10. ISO 9692-1 (2013) Welding and allied processes — Types of joint preparation — Part 1: Manual metal arc welding, gas-shielded metal arc welding, gas welding, TIG welding and beam welding of steels.
  • 11. Kranz B., Sonsino C.M. (2010), Verification of FAT Values for the Application of the Notch Stress Concept with the Reference Radii Rref = 1.00 and 0.05 mm, Weld World, 54(7-8), 218-224.
  • 12. Livieri P., Lazzarin, P. (2005), Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values, Int. Journal of Fracture, 133(3), 247-276.
  • 13. Lotsberg I., Sigurdsson G. (2006), Hot Spot Stress S-N Curve for Fatigue Analysis of Plated Structures, J. Offshore Mech. Arct. Eng., 128(4), 330-336.
  • 14. Molski K.L., Tarasiuk P., Glinka G. (2019), Description of stress concentration at tee welded joints subjected to tensile and bending loads, Opole University of Technology, Oficyna Wydawnicza, Studia i Monografie, 516, 61–80 (in Polish).
  • 15. Monahan C.C. (1995), Early fatigue cracks growth at welds, Computational Mechanics Publications, Southampton,
  • 16. Niemi E., Fricke W. Maddox S. J. (2018), Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components, https://doi.org/10.1007/978-981-10-5568-3.
  • 17. Peterson R.E. (1974), Stress concentration design factors, 2nd ed., Wiley, New York.
  • 18. Radaj D., Sonsino CM., Fricke W. (2009), Recent developments in local concepts of fatigue assessment of welded joints, International Journal of Fatigue, 31(1), 2–11.
  • 19. Remes, H., Varsta, P. (2010), Statistics of Weld Geometry for LaserHybrid Welded Joints and its Application within Notch Stress Approach, Weld World, 54(7-8), 189-207.
  • 20. Schijve J. (2012), Fatigue predictions of welded joints and the effective notch stress concept, International Journal of Fatigue, 45, 31–38.
  • 21. Singh P.J., Achar D.R.G., Guha B., Nordberg H. (2002), Influence of weld geometry and process on fatigue crack growth characteristics of AISI 304L cruciform joints containing lack of penetration defects, Sci. Technol. Weld Join., 7(5), 306–312.
  • 22. Singh P.J., Guha B., Achar D.R.G. (2003), Fatigue life prediction using two stage model for AISI 304L cruciform joints, with different fillet geometry, failing at toe, Sci. Technol. Weld. Join., 8(1), 69–75.
  • 23. Sonsino C.M., Fricke W, de Bruyne F., Hoppe A., Ahmadi A., Zhang G. (2012), Notch stress concepts for the fatigue assessment of welded joints – Background and applications, Int. Journal of Fatigue, 34(1), 2–16.
  • 24. Stenberg T., Barsoum Z., Balawi S.O.M. (2015), Comparison of local stress based concepts — Effects of low-and high cycle fatigue and weld quality, Engineering Failure Analysis, 57, 323–333.
  • 25. Tchoffo Ngoula D., Beier H. Th., Vormwald M. (2017), Fatigue crack growth in cruciform welded joints: Influence of residual stresses and of the weld toe geometry, International Journal of Fatigue, 101(2), 253-262.
  • 26. Tsuji I. (1990), Estimation of stress concentration factor at weld toe of non-load carrying fillet welded joints, Trans West Jpn Soc Naval Architects, 80, 241–251.
  • 27. Ushirokawa O., Nakayama E. (1983), Stress concentration factor at welded joints, Ishikawajima–Harima Eng. Rev., 23(4), 351–355.
  • 28. Wooryong P., Chitoshi M. (2008), Fatigue assessment of largesize welded joints based on the effective notch stress approach, International Journal of Fatigue, 30(9), 1556-1568.
  • 29. Young J.Y., Lawrence F.V. (1985), Analytical and graphical aids for the fatigue design of weldments, Fatigue Fracture Eng Mater Struct., 8(3), 223–241.
  • 30. Zerbst U., Madia M., Schork B. (2016), Fracture mechanics based determination of the fatigue strength of weldments, Procedia Structural Integrity, 1, 10-17.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-919d5dd6-709d-4da8-8ae1-b4a33a9b31f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.