PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the metal phase of novel Al2O3/TiO2/TiAl2O5 composites obtained via the slip casting method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to analyze the ceramic-metal composite Al2O3/TiO2/TiAl2O5 obtained using the slip-casting method. Samples containing 50% of the solid phase and 2% and 4% fractions of the metallic phase were examined. Rheological investigations were performed. Measurements of shrinkage and density of the composites produced were determined. The phase composition of the obtained composite was investigated using SEM/EDS and XRD techniques. Stereological analysis was performed as well. The slip-casting method enables the production of the proposed composite, reinforced by the presence of TiO2 and TiAl2O5. With the increase in the content of the metallic phase in the composite, the thialite phase content increases, but relative density and volumetric shrinkage of the obtained composites both decrease. Thialite grains are characterized by a size in the range of 4 µm to 15 µm, which leads to a low density of the samples. The results revealed that no significant effect of changing the metal phase content of the slurries used for the composites being fabricated was observed on the limiting grain growth of alumina during the sintering process of slip-casting composites. This finding is important as it suggests that the increase in metallic phase content does not lead to undesirable grain coarsening, which could degrade mechanical properties.
Rocznik
Strony
art. no. e152213
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St, 02-507 Warsaw, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St, 02-507 Warsaw, Poland
  • Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St, 00-664 Warsaw, Poland
  • Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St, 00-664 Warsaw, Poland
Bibliografia
  • [1] N. Radhika and M.A. Sathish, “A Review on Si-Based Ceramic Matrix Composites and their Infiltration Based Techniques,” Silicon, vol. 14, pp. 10141–10171, 2022, doi: 10.1007/s12633-022-01763-y.
  • [2] S. Mekalke, J. Kendannavar, and R. Rao, “Performance Testing of Ceramic Metal Composites: A Review,” I-manager’s J. Mater. Sci., vol. 7, no. 4, pp. 42–50, 2020, doi: 10.26634/jms.7.4.15866.
  • [3] M. Lou et al., “Temperature-induced wear transition in ceramic-metal composites,” Acta Mater., vol. 205, p. 116545, 2021, doi: 10.1016/j.actamat.2020.116545.
  • [4] X. Ji, C. Zhang, and S. Li, “In Situ Synthesis of Core-Shell-Structured SiCp Reinforcements in Aluminium Matrix Composites by Powder Metallurgy,” Metals, vol. 11, p. 1201, 2021, doi: 10.3390/met11081201.
  • [5] U. Scheithauer, T. Slawik, E. Schwarzer, H.J. Richter, T. Moritz, and A. Michaelis, “Additive Manufacturing of Metal-Ceramic-Composites by Thermoplastic 3D-Printing (3DTP),” J. Ceram. Sci. Technol., vol. 6, pp. 125–132, 2015, doi: 10.4416/JCST2014-00045.
  • [6] I.M.R. Najjar, A.M. Sadoun, M. Abd Elaziz, H. Ahmadian, A. Fathy, and A.M. Kabeel, “Prediction of the tensile properties of ultrafine grained Al–SiC nanocomposites using machine learning,” J. Mater. Res. Technol., vol. 24, pp. 7666–7682, 2023, doi: 10.1016/j.jmrt.2023.05.035.
  • [7] E. Ghandourah et al., “Comprehensive investigation of the impact of milling time on microstructural evolution and tribological properties in Mg-Ti-SiC hybrid composites,” Mater. Today Commun., vol. 38, p. 107835, 2024, doi: 10.1016/j.mtcomm.2023.107835.
  • [8] W.S. Barakat, M.I.A. Habba, A. Ibrahim, A. Fathy, and O.A. Elkady, “The effect of Cu coated Al2O3 particle content and densification methods on the microstructure and mechanical properties of Al matrix composites,” J. Mater. Res. Technol., vol. 24, pp. 6908–6922, 2023, doi: 10.1016/j.jmrt.2023.05.010.
  • [9] A.M. Sadoun et al., “An enhanced Dendritic Neural Algorithm to predict the wear behavior of alumina coated silver reinforced copper nanocomposites,” Alex. Eng. J., vol. 65, pp. 809–823, 2023, doi: 10.1016/j.aej.2022.09.036.
  • [10] I.R. Najjar, A.M. Sadoun, A. Fathy, A.W. Abdallah, M.A. Elaziz, and M. Elmahdy, “Prediction of Tribological Properties of Alumina-Coated, Silver-Reinforced Copper Nanocomposites Using Long Short-Term Model Combined with Golden Jackal Optimization,” Lubricants, vol. 10, no. 11, p. 227, 2022, doi: 10.3390/lubricants10110277.
  • [11] P. Singh, N. Ram Chauhan, and S. Rajesha, “Effect of the addition of ductile phase on mechanical properties of Alumina/nano SiC ceramic composite,” Adv. Mater. Process. Technol., 2022, doi: 10.1080/2374068X.2022.2120291.
  • [12] K. Konopka, M. Maj, and K.J. Kurzydłowski, “Studies of the Effect of Metal Particles on the Fracture Toughness of Ceramic Matrix Composites,” Mater. Charact., vol. 51, pp. 335–340, 2023, doi: 10.1016/j.matchar.2004.02.002.
  • [13] Y. Zhang, and X. Li, “Bio-inspired, Graphene/Al2O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness,” Nano Lett., vol. 17, pp. 6907–6915, 2017, doi: 10.1021/acs.nanolett.7b03308.
  • [14] W. Fahrenholtz, D. Ellerby, and E. Loehman, “Al2O3–Ni Composites with High Strength and Fracture Toughness,” J. Am. Ceram. Soc., vol. 83, no. 5, pp. 1279–1280, 2000, doi: 10.1111/j.1151-2916.2000.tb01368.x.
  • [15] S. Meir, S. Kalabukhov, N. Frage, and S. Hayun, “Mechanical Properties of Al2O3\Ti Composites Fabricated by Spark Plasma Sintering,” Ceram. Int., vol. 41, pp. 4637–4643, 2015, doi: 10.1016/j.ceramint.2014.12.008.
  • [16] D. Horvitz, I. Gotman, E. Gutmanas, and N. Claussen, “In Situ Processing of Dense Al2O3–Ti Aluminide Interpenetrating Phase Composites,” J. Eur. Ceram. Soc., vol. 22, pp. 947–954, 2002, doi: 10.1016/S0955-2219(01)00396-X.
  • [17] K. Edalati, H. Iwaoka, Z. Horita, M. Konno, and T. Sato, “Unusual Hardening in Ti/Al2O3 Nanocomposites Produced by High-Pressure Torsion Followed by Annealing,” Sci. Eng. A-Struct. Mater., vol. 529, pp. 435–441, 2011, doi: 10.1016/j.msea.2011.09.056.
  • [18] M. Wachowski et al., “Study on Manufacturing via Slip Casting and Properties of Alumina-Titanium Composite Enhanced by Thialite Phase,” Materials, vol. 16, p. 79, 2023, doi: 10.3390/ma16010079.
  • [19] A.M. Segadaes, M.R. Morelli, and R.G.A. Kiminami, “Combustion synthesis of aluminium titanate,” J. Eur. Ceram. Soc., vol. 18, pp. 771–781, 1998.
  • [20] M. Wachowski et al., “Manufacturing of ZrO2-Ni graded composites via centrifugal casting in the magnetic field,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, pp. 539–545, 2020, doi: 10.24425/bpasts.2020.133379.
  • [21] M. Wachowski, J. Zygmuntowicz, R. Kosturek, K. Konopka, and W. Kaszuwara, “Manufacturing of Al2O3/Ni/Ti Composites Enhanced by Intermetallic Phases,” Materials, vol. 14, no. 13, p. 3510, 2021, doi: 10.3390/ma14133510.
  • [22] M.H. Bocanegra-Bernal and B. Matovic, “Mechanical Properties of Silicon Nitride-Based Ceramics and Its Use in Structural Applications at High Temperatures,” Sci. Eng. A-Struct. Mater., vol. 527, pp. 1314–1338, 2010, doi: 10.1016/j.msea.2009.09.064.
  • [23] T. Wejrzanowski, W.L. Spychalski, K. Rożniatowski, and K.J. Kurzydłowski, “Image based analysis of complex microstructures of engineering materials,” Int. J. Appl. Math. Comput. Sci., vol. 18, pp. 33–39, 2008, doi: 10.2478/v10006-008-0003-1.
  • [24] J. Michalski, T. Wejrzanowski, R. Pielaszek, K. Konopka, W. Łojkowski, and K.J. Kurzydłowski, “Application of image analysis for characterization of powders,” Mater. Sci. Pol., vol. 23, pp. 79–86, 2005.
  • [25] P. Falkowski and R. Żurowski, “Shaping of alumina microbeads by drop-casting of the photopolymerizable suspension into silicone oil and UV curing,” J. Eur. Ceram. Soc., vol. 42, no. 9, pp. 3957–3967, 2022, doi: 10.1016/j.jeurceramsoc.2022.03.014.
  • [26] C.J. Tsai, C.N. Chen, and W.J. Tseng, “Rheology, structure, and sintering of zirconia suspensions with pyrogallol-poly(ethylene glycol) as polymeric surfactant,” J. Eur. Ceram. Soc., vol. 33, pp. 3177–3184, 2013, doi: 10.1016/j.jeurceramsoc.2013.06.006.
  • [27] P. Wiecinski and A. Wieclaw-Midor, “Slip casting of highly concentrated ZnO suspensions: Rheological studies, two-step sintering and resistivity measurements,” Ceram. Int., vol. 46, pp. 19 896–19 903, 2020, doi: 10.1016/j.ceramint.2020.05.051.
  • [28] A. Idzkowska, P. Wiecinska, and M. Szafran, “Acryloyl derivative of glycerol in fabrication of zirconia ceramics by polymerization in situ,” Ceram. Int., vol. 40, pp. 13289–13298, 2014, doi: 10.1016/j.ceramint.2014.05.039.
  • [29] M. Szafran, P. Wiecinska, A. Szudarska, and T. Mizerski, “New multifunctional compounds in gelcasting process- introduction to their synthesis and application,” J. Aust. Ceram. Soc., vol. 49, pp. 1–6, 2013.
  • [30] R. Żurowski et al., “Sustainable ZTA composites produced by an advanced centrifugal slip casting method,” Ceram. Int., vol. 48, pp. 11678–11695, 2022, doi: doi: 10.1016/j.ceramint.2022.01.026.
  • [31] J. Zygmuntowicz et al., “Properties of Al2O3-Ti/Ni composites fabricated via centrifugal slip casting under environmentally asessed conditions as a step toward climate-neutral society,” Ceram. Int., vol. 48, no. 15, pp. 21879–21892, 2022, doi: 10.1016/j.ceramint.2022.04.174.
  • [32] R. Żurowski, J. Zygmuntowicz, P. Piotrkiewicz, M. Wachowski, and M.M. Szczypiński, “ZTA Pipes with a Gradient Structure-Effect of the Rheological the Behavior of Ceramic Suspensions on the Gradient Structure and Characterized of the Obtained Products,” Materials, vol. 14, no. 23, p. 7348, 2021, doi: 10.3390/ma14237348.
  • [33] J. Zygmuntowicz, A. Miazga, P. Wiecinska, W. Kaszuwara, K. Konopka, and M. Szafran, “Combined centrifugal-slip casting method used for preparation the Al2O3-Ni functionally graded composites,” Compos. Part B Eng., vol. 141, pp. 158–163, 2018, doi: 10.1016/j.compositesb.2017.12.056.
  • [34] J. Zygmuntowicz et al., “The Potential of Al2O3–ZrO2-Based Composites, Formed via CSC Method, in Linear Infrastructure Applications Based on Their Mechanical, Thermal and Environmental performance,” Metall. Mater. Trans. A, vol. 53, pp. 663–678, 2022, doi: 10.1007/s11661-021-06544-7.
  • [35] S. Shi, S. Cho, T. Goto, and T. Sekino, “The Effects of Sintering Temperature on Mechanical and Electrical Properties of Al2O3-Ti Composites,” Mater. Today Commun., vol. 25, p. 101522, 2020, doi: 10.1016/j.mtcomm.2020.101522.
  • [36] J. Zygmuntowicz, A. Miazga, and K. Konopka, “Morphology of nickel aluminate spinel (NiAl2O4) formed in the Al2O3-Ni composite system sintered in air,” Compos. Theory Pract., vol. 14, no. 2, pp. 106–110, 2014.
  • [37] A. Tsetsekou, “A comparison study of tialite ceramics doped with various oxide materials and tialite–mullite composites: microstructural, thermal and mechanical properties,” J. Eur. Ceram. Soc., vol. 25, no. 4, pp. 335–348, 2005, doi: 10.1016/j.jeurceramsoc.2004.03.024.
  • [38] L. Giordano, M. Viviani, C. Bottino, M.T. Buscaglia, V. Buscaglia, and P. Nanni, “Microstructure and thermal expansion of TiAl2O5–MgTi2O5 solid solutions obtained by reaction sintering,” J. Eur. Ceram. Soc., vol. 22, no. 11, pp. 1811–1822, 2002, doi: 10.1016/S0955-2219(01)00503-9.
  • [39] M. Nagano, S. Nagashima, H. Maeda, and A. Kato, “Sintering behavior of TiAl2O5 base ceramics and their thermal properties,” Ceram. Int., vol. 25, no. 8, pp. 681–687, 1999, doi: 10.1016/S0272-8842(98)00083-2.
  • [40] M. Zaharescu, M. Crisan, D. Crisan, N. Drãgan, A. Jitianu, and M. Preda, “TiAl2O5 preparation starting with reactive powders obtained by sol-gel method,” J. Eur. Ceram. Soc., vol. 18, no. 9, pp. 1257–1264, 1998, doi: 10.1016/S0955-2219(98)00051-X.
  • [41] D.S. Perera and D.J. Cassidy, “Thermal cycling of iron- and magnesium-containing aluminium titanate in a dilatometer,” J. Mat. Sci. Lett., vol. 16, pp. 699–701, 1997, doi: 10.1023/A:10185 56408965.
  • [42] Y.X. Huang, A.M. R. Senos, and J.L. Baptista, “Thermal and mechanical properties of aluminum titanate–mullite composites,” J. Mater. Res., vol. 15, no. 2, pp. 357–363, 2000, doi: 10.1557/JMR.2000.0056.
  • [43] T. Yano, M. Kiyohara, and N. Otsuka, “Thermal and mechanical properties of aluminum titanate–mullite composites (part 3) – effects of aluminum titanate particle size,” J. Ceram. Soc. Jpn. Int. Ed, vol. 100, no. 4, pp. 482–487, 1992.
  • [44] J. Zygmuntowicz et al., “Characterization of Al2O3 Matrix Composites Fabricated via the Slip Casting Method Using NiAl-Al2O3 Composite Powder,” Materials, vol. 15, p. 2920, 2022, doi: 10.3390/ma15082920.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91985225-0de4-4250-b5df-2c4150b5bcdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.