PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of impulse load influence on the stress state of foam materials with positive and negative poisson’s ratio

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of impulse load applied for different duration on the distribution of normalised dynamic radial stresses in positive and negative Poisson’s ratio medium was investigated in this study. For solving the non-stationary problem in the case of plane deformation for structurally inhomogeneous materials, the model of Cosserat continuum was applied. This model enables accounting for the influence of shear-rotation deformation of micro-particles of the medium. In the framework of Cosserat elasticity, on applying the Fourier transforms for time variable and developing the boundary integral equation method, solving of the non-stationary problem reduces to the system of singular integral equations, where the components that determine the influence of shear-rotation deformations are selected. The numerical calculations were performed for the foam medium with positive and negative Poisson’s ratio for different values of time duration of impulse. Developed approach can be used to predict the mechanical behaviour of foam auxetic materials obtained at different values of a volumetric compression ratio under the action of time variable load based on analysis of the dis-tribution of radial stresses in foam medium.
Słowa kluczowe
Rocznik
Strony
79--83
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
  • Faculty of Architecture, Construction and Design, Department of Applied Mathematics and Mechanics, Lutsk National Technical University, 75 Lvivska st., Lutsk, 43018, Ukraine
  • Faculty of Architecture, Construction and Design, Department of Applied Mathematics and Mechanics, Lutsk National Technical University, 75 Lvivska st., Lutsk, 43018, Ukraine
Bibliografia
  • 1. Brighenti R. (2014), Smart behaviour of layered plates through the use of auxetic materials, Thin-Walled Structures, 84, 432-442.
  • 2. Carneiro V., Meireles J., Puga H. (2013), Auxetic materials — A review, Materials Science-Poland, 31(4), 561-571.
  • 3. Duncan O., Shepherd T., Moroney Ch., Foster L., Venkatraman Pr, Winwood K., Allen T., Alderson A. (2018), Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection, Applied Sciences, 8, 941, 1-33.
  • 4. Evans K. (1991), Auxetic Polymers: A New Range of Materials, Endeavour, 15(4), 170–174.
  • 5. Grima J., Attard D., Gatt R., Cassar R. (2009), A Novel Process for the Manufacture of Auxetic Foams and for Their re-Conversion to Conventional Form, Advanced Engineering Materials, 11(7), 533-535.
  • 6. Lakes R. S. (1991), Experimental Micro Mechanics Methods for Conventional and Negative Poisson's Ratio Cellular Solids as Cosserat Continua, Journal of Engineering Materials and Technology, 113, 148-155.
  • 7. Lakes R. S. (2016), Physical Meaning of Elastic Constants in Cosserat, Void, and Microstretch Elasticity, Journal of Mechanics of Materials and Structues, 11(3), 217-229.
  • 8. Li D., Dong L., Lakes R. (2016), A Unit Cell Structure with Tunable Poisson's Ratio from Positive to Negative, Materials Letters, 164, 456-459.
  • 9. Mikulich O., Shvabyuk V., Sulym H. (2017), Dynamic Stress Concentration at the Boundary of an Incision at the Plate under the Action of Weak Shock Waves, Acta Mechanica et Automatica, Vol. 11, No. 3, 217-221.
  • 10. Naik S., Dandagwhal R., Wani C., Giri S. (2019), A review on various aspects of auxetic materials. AIP Conference Proceedings, 2105 (1), 10.1063/1.5100689.
  • 11. Novak N., Vesenjak M., Ren Z. (2016), Auxetic Cellular Materials - a Review. Journal of Mechanical Engineering, 62(9), 485-493.
  • 12. Nowacki W. (1974), The Linear Theory of Micropolar Elasticity, Springer, New York.
  • 13. Ren X. , Das R., Tran P., Ngo T., Xie Y. (2018), Auxetic Metamaterials and Structures: A Review, Smart Mater. Struct., 27, 1-38.
  • 14. Rueger Z., Lakes R.S. (2016), Cosserat elasticity of negative Poisson’s ratio foam: Experiment, Smart Materials and Structures, Vol. 25, 1-8.
  • 15. Scarpa F., Alderson A., Ruzzene M., K. (2016), Auxetics in smart systems and structures, Smart Materials and Structures, 25(5), 1-8.
  • 16. Strek T., Michalski J., Jopek H. (2019) Computational analysis of the mechanical impedance of the sandwich beam with auxetic metal foam core, Physica Status Solidi B, Vol. 256 (1), 1800423, 10.1002/pssb.201800423.
  • 17. Sulym H., Mikulich O., Shvabyuk V. (2018), Investigation of the dynamic stress state of foam media in Cosserat elasticity, Mechanics and Mechanical Engineering, Vol. 22, No.3, 739-750.
  • 18. Underhill R.S. (2017), Manufacture and characterization of auxetic foams, DRDC-RDDC-2017-R099.
  • 19. Zhang X., Ding H., An Li. (2014), Numerical Investigation on Dynamic Crushing Behavior of Auxetic Honeycombs with Various Cell-Wall Angles, Advances in Mechanical Engineering, 10.1155/2014/679678.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9198213f-805a-4b44-a8a2-d2ad273755da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.