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Abstract. We adapt the general conditions of the weak convergence for the sequence of
processes with discrete time to the diffusion process towards the weak convergence for the
discrete-time models of a financial market to the continuous-time diffusion model. These
results generalize a classical scheme of the weak convergence for discrete-time markets to the
Black-Scholes model. We give an explicit and direct method of approximation by a recurrent
scheme. As an example, an Ornstein-Uhlenbeck process is considered as a limit model.
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1. INTRODUCTION

The paper focuses on the diffusion approximation for the recurrent schemes of financial
markets. The problem of convergence of the discrete-time financial models to the
models with continuous time is well developed: starting from the central limit theorem
for approximation of the Black-Scholes model by the Cox-Ross-Rubinstein model and
continuing with more involved models, see, e.g., [1–5,12]. The evident questions here
are: does the weak convergence of the stock price processes imply the convergence
of the option price processes or the convergence of the hedging portfolios and the
optimal portfolio strategies. The attempts to go ahead from simple binomial schemes
were made using the results of weak convergence. These results were generalized with
the help of the functional limit theorems in [13] and summarized, e.g., in [19]. The
rate of convergence of the option prices in the framework of weak convergence was
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also widely discussed, e.g. in [2, 11]. However, for the case when the limiting stock
price process is a semimartingale of a more general structure, for example, if it is
a solution of the diffusion stochastic differential equation, the results are formulated
under comparatively restricted conditions. For instance, the approximation by Markov
chains is studied and the conditions using analytical terms are formulated in [19]. The
binomial and trinomial models are also widely used (see e.g., [19, 24]). For example,
the approximation described in Chapter 2 of [19] is based on the binomial model and
the sequence of real numbers that one needs to define.

The goal of this paper is to adapt the theorems of the diffusion approximation from
[18] and [13] to the multiplicative financial models which are natural for the prelimit
market. Moreover, we construct the recurrent schemes for the prelimit market that
are even more natural, to our opinion, than the trinomial schemes since they are
constructed based on the binomial scheme with the help of the scheme similar to the
Euler approximation. For this we proceed with three steps: first, we consider the Euler
approximation scheme for the solution of a stochastic differential equation; second,
we replace the increments of a Wiener process with binomial random summands; and,
third, we take into account the adjusting term that appears when we pass from the
multiplicative financial schemes to the additive mathematical ones. To some extent,
these ideas were realized in [19], however our approach is more explicit, direct and
general.

The paper is organized as follows. In Section 2 we present the general results
from [18] concerning the conditions of the weak convergence for the discrete-time
processes to the general diffusion process, i.e., we formulate the general functional
limit theorem for the diffusion approximation. In Section 3 we adapt these results
to the additive and, that is even more important, multiplicative schemes. Then we
apply the results to the market for which the limit price process is modeled by the
geometric Ornstein-Uhlenbeck process. The recurrent scheme for the diffusion ap-
proximation for the case when the limiting process is represented by the geometric
Ornstein-Uhlenbeck process is constructed. We discuss the applicability of the ge-
ometric Ornstein-Uhlenbeck process in the sense that the corresponding financial
model is arbitrage-free and complete. The conditions of convergence for the option
prices including the joint convergence of the stock prices and the Radon-Nikodym
derivatives are established as well. Note that another type of approximation of the
financial market driven by the geometric Ornstein-Uhlenbeck process, and even by
the geometric Ornstein-Uhlenbeck-Lévy process, was studied in [21].

2. GENERAL FUNCTIONAL LIMIT THEOREM
FOR THE DIFFUSION APPROXIMATION

Recall some notions from the classical semimartingale theory (see, for example, [18]).
Let the set T = [0, T ] and ΩF = (Ω,F , (Ft, t ∈ T),P) be a complete filtered probabil-
ity space satisfying the standard assumptions. Denote as D(T) the set of all real-valued
functions on T that have left-hand limits and are continuous on the right (cadlag
functions). In what follows we consider only cadlag processes (processes with cadlag
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trajectories). A real-valued process X = {Xt,Ft, t ∈ T} considered on the probability
space ΩF is called a semimartingale if it admits the decomposition of the form

Xt = X0 +Mt +At,

where M is a local martingale with M0 = 0 and A is a process of locally bounded
variation. A semimartingale {Xt,Ft, t ∈ T} is called a special semimartingale if it
admits the decomposition mentioned above and the process A is predictable.

Denote as 〈M〉 = {〈M〉t , t ∈ T} the quadratic characteristic of the locally
square-integrable martingale {Mt,Ft, t ∈ T}. It is a predictable increasing process
for which the processM2

t −〈M〉t is a local martingale. Also, denote ∆Xt = Xt−Xt−.

Theorem 2.1 ([18]). If X = {Xt,Ft, t ∈ T} is such a semimartingale that for some
a > 0 and all t ∈ T we have |∆Xt| ≤ a, then X is a special semimartingale.

Let {Xt,Ft, t ∈ T} be a semimartingale. For each a > 0 we denote

Xa
t =

∑

0<s≤t
∆Xs1(|∆Xs| > a) =

t∫

0

∫

|x|>a

xdµ, t ∈ T,

and Y at = Xt − Xa
t , t ∈ T, where µ is the measure of jumps of the process X. The

jumps of Y a are bounded, |∆Y at | ≤ a, so Y a is a special semimartingale according
to the Theorem 2.1. It means that there exists a local martingale Ma and such a
predictable process Ba(X) of locally bounded variation that

Y at = X0 +Bat (X) +Ma
t , t ∈ T, Ba0 = Ma

0 = 0.

Thus
Xt = X0 +Bat (X) +Ma

t +Xa
t , t ∈ T.

In turn, a local martingale {Ma
t ,Ft, t ∈ T} admits a decomposition

Ma
t = Mac

t +Mad
t

into continuous and purely discontinuous parts, where the continuous componentMac

does not depend on a, and the purely discontinuous componentMad can be presented
as

Mad
t =

t∫

0

∫

|x|≤a

xd(µ− ν),

where ν is the compensator (a dual predictable projection) of the measure µ. Let us
denoteM c = Mac and Ct(X) = 〈M c〉t. The processes (Ba(X), C(X), ν) compose the
triplet of predictable characteristics for the semimartingale X. Now we introduce the
general pre-limit and limit processes participating in the diffusion approximation. In
a connection to the limit process, let {Xt,Ft, t ∈ T} be a continuous semimartingale.
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In this case it is obvious that ν ≡ 0, and Bat (X) coincide for any a > 0. We denote as
Bt(X) the common value of all Bat (X). Suppose that

Bt(X) =

t∫

0

b(s,X)ds (2.1)

and

Ct(X) =

t∫

0

c2(s,X)ds (2.2)

for some predictable measurable functions b(t, x(·)), c(t, x(·)) : T × D(T) → R.
Moreover, we suppose that c(t, x(·)) > 0. In this case we can apply the general-
ized Lévy theorem (see, e.g., [10]) concluding that there exists a Wiener process
W = (Wt,Ft, t ∈ T), adapted to the filtration (Ft, t ∈ T) such that M c admits the
representation M c

t =
∫ t
0
c(s,X)dWs. Therefore, X is the solution of the stochastic

differential equation

Xt = X0 +

t∫

0

b(s,X)ds+

t∫

0

c(s,X)dWs. (2.3)

Assume that the coefficients of the equation (2.3) satisfy the following condition:
there exists a function L : T→ R+ such that for any t ∈ T and any X ∈ D(T)

|b(t,X)| ≤ L(t)(1 + sup
s≤t
|Xs|), (2.4)

c2(t,X) ≤ L(t)(1 + sup
s≤t

(Xs)
2), (2.5)

T∫

0

L(t)dt <∞. (2.6)

Suppose that we have the sequence of the probability spaces (Ωn,Fn, (Fnt , t ∈ T),
Pn), n ≥ 1 with a filtration, and a sequence of semimartingales Xn = (Xn

t ,Fnt , t ∈ T)
on the corresponding probability space, with trajectories in D(T) a.s. and with the
triplets of the predictable characteristics (Bn,a, Cn, νn). Suppose that for any ε > 0
and a ∈ (0, 1] the following conditions hold

lim
n

Pn
(

sup
t∈T
|∆Xn

t | ≥ ε
)

= 0, (2.7)

lim
n

Pn
(

sup
t∈T

∣∣∣Bn,at −
t∫

0

b(s,Xn)ds
∣∣∣ ≥ ε

)
= 0, (2.8)
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lim
n

Pn
(

sup
t∈T

∣∣∣〈Mn,a〉t −
t∫

0

c2(s,Xn)ds
∣∣∣ ≥ ε

)
= 0. (2.9)

Here we denote as Q and Qn, n ≥ 1 the measures that correspond to the processes
X and Xn, n ≥ 1, respectively.

Theorem 2.2 ([18]). Let the conditions (2.4)–(2.9) hold. If, in addition, Xn
0

d→ X0

and functions b, c determine uniquely the measure Q, then we have the weak conver-
gence of probability measures

Qn
W→ Q .

3. A FUNCTIONAL LIMIT THEOREM FOR THE DIFFUSION
APPROXIMATION OF THE SUMS AND THE PRODUCTS
OF RANDOM VARIABLES

3.1. THE DIFFUSION APPROXIMATION FOR AN ADDITIVE SCHEME

To adapt the well known functional limit theorems towards the financial models,
suppose now that we consider the semimartingale X = {Xt,Ft, t ∈ T} from the
previous section but in a simplified situation. More precisely, we suppose that the
measurable functions b and c have forms b = b(t, x) and c = c(t, x) : T × R → R.
We assume also that the coefficients b and c satisfy the conditions for existence and
uniqueness of the weak solution of the stochastic differential equation

dXt = b(t,Xt)ds+ c(t,Xt)dWt, t ∈ T, X0 = x0. (3.1)

Let c(t, x) ≥ 0, t ∈ T, x ∈ R, and the limit process X be a solution of this equation.

Remark 3.1. The conditions for existence and uniqueness of the weak solution in
the case of the homogeneous coefficients b and c were formulated in [17] and the most
general conditions were obtained in [6] and [7]. For the inhomogeneous case, we just
refer to the classical book [20] containing results on the existence and uniqueness of
the solution of a martingale problem.

Now we simplify the prelimit processes introducing the step-wise functions. Let
n ≥ 1. Consider the sequence of the probability spaces (Ωn,Fn, (Fnt , t ∈ T),Pn) with
a filtration and the sequence of step-wise semimartingales Xn = {Xn

t ,Fnt , t ∈ T}
defined on a corresponding probability space and admitting a representation

Xn
t = Xn

kT
n

for
kT

n
≤ t < (k + 1)T

n
. (3.2)

So, the trajectories of the process Xn have the jumps at the points kT/n, k = 0, . . . , n
and are constant in the interior intervals. Denote Fnk = σ(Xn

t , t ≤ kT
n ) and

Q
(n)
k = ∆Xn

kT
n

= Xn
kT
n

− Xn
(k−1)T

n

, k = 1, . . . , n. Then the random variables Q(n)
k

are Fnk -measurable, k = 1, . . . , n and in what follows we identify Fnt with Fnk for
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kT
n ≤ t < (k+1)T

n . Let the notation [x] stand for the entire part of a number x. It
follows from the definition of the triplet of predictable characteristics that in this case
Bn,at =

∑
1≤k≤[nt

T ] E(Q
(n)
k 1|Q(n)

k |≤a
|Fnk−1). Since Xn is a jump process, we have that

Cn = 0. Hence

〈Mn,a〉t =

t∫

0

∫

|x|≤a

x2dνn −
∑

0<s≤t

( ∫

|x|≤a

xνn({s}, dx)
)2

=
∑

1≤k≤[nt
T ]

(
E
((
Q

(n)
k

)2
1|Q(n)

k |≤a
|Fnk−1

)
−
(
E
(
Q

(n)
k 1|Q(n)

k |≤a
|Fnk−1

))2)

=
∑

1≤k≤[nt
T ]

Var
(
Q

(n)
k 1|Q(n)

k |≤a
|Fnk−1

)
.

(3.3)

Denote by Q and Qn, n ≥ 1 the measures that correspond to the processes X and
Xn, n ≥ 1, respectively. Throughout the paper, we put

∑0
k=1 = 0,

∏0
k=1 = 1. The

next result follows immediately from Theorem 2.2.

Theorem 3.2. Let the following conditions hold.

Xn
0

d→ x0. (3.4)

For any ε > 0, a ∈ (0, 1],

lim
n

Pn
(

sup
1≤k≤n

|Q(n)
k | ≥ ε

)
= 0, (3.5)

lim
n

Pn
(

sup
t∈T

∣∣∣
∑

1≤k≤[nt
T ]

E(Q
(n)
k 1|Q(n)

k |≤a
|Fnk−1)−

t∫

0

b(s,Xn
s )ds

∣∣∣ ≥ ε
)

= 0 (3.6)

and

lim
n

Pn
(

sup
t∈T

∣∣∣
∑

1≤k≤[nt
T ]

Var(Q
(n)
k 1|Q(n)

k |≤a
|Fnk−1)−

t∫

0

c2(s,Xn
s )ds

∣∣∣ ≥ ε
)

= 0. (3.7)

Also, let the functions b, c uniquely determine the measure Q. Then we have the weak
convergence of the probability measures

Qn
W→ Q .

3.2. A DISCRETE APPROXIMATION SCHEME
FOR THE PRODUCT-PROCESSES IN THE FINANCIAL MARKET

Consider the sequence of discrete-time financial markets consisting of two assets,
a bond and a stock. We suppose that the bond admits the representation

Bnt = Bn0
∏

1≤k≤[nt
T ]

(
1 + r

(n)
k

)
,
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where {r(n)k > −1, n ≥ 1, 1 ≤ k ≤ n} are real numbers. Let the stock admit the
representation

Snt = Sn0
∏

1≤k≤[nt
T ]

(
1 +R

(n)
k

)
,

where {R(n)
k > −1, 1 ≤ k ≤ n} are random variables on the probability space

(Ωn,Fn,Pn), n ≥ 1.We introduce the σ-fields Fn0 = {∅,Ω}, Fnk = σ{R(n)
i , 1 ≤ i ≤ k}.

We are in a position to present the conditions of the weak convergence of this product
model to the limit model of the form

Bt = B0 exp

{ t∫

0

r(s)ds

}
, St = exp

{
Xt −

1

2

t∫

0

c2(s,Xs)ds

}
,

where the process X is the unique weak solution of the equation (3.1). Let’s introduce
the processes

Xn
t =

∑

1≤k≤[nt
T ]

R
(n)
k

and
Y nt =

∑

1≤k≤[nt
T ]

(
R

(n)
k − 1

2

(
R

(n)
k

)2)
.

We denote as Q and Qn, n ≥ 1 the measures that correspond to the processes S and
Sn, n ≥ 1, respectively.

Theorem 3.3.
1) Let the condition (A) hold:

(A) (i) Bn0 → B0 and sup0≤k≤n |r(n)k | → 0, n→∞;

(ii)
∑

1≤k≤[nt
T ]

(
r
(n)
k − 1

2

(
r
(n)
k

)2)→
t∫
0

r(s)ds, n→∞;

(iii) lim supn→∞
∑

1≤k≤n

(
r
(n)
k

)2
<∞.

Then the point-wise convergence holds: Bnt → Bt, n→∞.
2) Let the conditions (B) and (C) hold:

(B) (i) Sn0 → exp{x0} and sup1≤k≤n |R(n)
k |

P→ 0, n→∞;
(ii) for any a ∈ (0, 1]

lim
C→∞

lim sup
n→∞

Pn
( ∑

1≤k≤n
E((R

(n)
k )21|R(n)

k |≤a
|Fnk−1) ≥ C

)
= 0;

(iii) for any a ∈ (0, 1]

lim
C→∞

lim sup
n→∞

Pn
( ∑

1≤k≤n
|E(R

(n)
k 1|R(n)

k |≤a
|Fnk−1)| ≥ C

)
= 0;
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(iv) for any ε > 0, a ∈ (0, 1]

lim
n

Pn
(

sup
t∈T

∣∣∣
∑

1≤k≤[nt
T ]

E(R
(n)
k 1|R(n)

k |≤a
|Fnk−1)−

t∫

0

b(s,Xn
s )ds

∣∣∣ ≥ ε
)

= 0;

(v) for any ε > 0, a ∈ (0, 1]

lim
n

Pn
(

sup
t∈T

∣∣∣
∑

1≤k≤[nt
T ]

E(R
(n)
k )21|R(n)

k |≤a
|Fnk−1)−

t∫

0

c2(s,Xn
s )ds

∣∣∣ ≥ ε
)

= 0;

(C) Functions b and c uniquely determine the measure Q.

Then we have weak convergence of the probability measures

Qn
W→ Q .

Proof. In connection with the convergence of Bn, let 0 < a < 1 be fixed. Due to condi-
tion (A), (i) we can consider such n0 that for n ≥ n0 we have that sup1≤k≤n |r(n)k | < a.
For such n we present log(Bnt ) as

log(Bnt ) = log(Bn0 ) +
∑

1≤k≤[nt
T ]

log
(

1 + r
(n)
k

)
= log(Bn0 ) +

∑

1≤k≤[nt
T ]

(
r
(n)
k − 1

2
(r

(n)
k )2

)

+α
(
a, r

(n)
k , 0 ≤ k ≤ n

) ∑

1≤k≤[nt
T ]

(
r
(n)
k

)2
,

where |α(a, r
(n)
k , 0 ≤ k ≤ n)| does not exceed a

3(1−a)3 . Then the convergence of Bn

follows immediately from conditions (A), (i) and (ii). Consider the weak convergence
of Qn. Due to condition (B), (i), we can fix any 0 < a < 1 and it is enough to establish
the corresponding convergence for

Sn,at = Sn0
∏

1≤k≤[nt
T ]

(
1 +R

(n,a)
k

)
,

where R(n,a)
k = R

(n)
k 1|R(n)

k |≤a
. We have that

logSn,at = logSn0 +
∑

1≤k≤[nt
T ]

log
(

1 +R
(n,a)
k

)

= logSn0 +
∑

1≤k≤[nt
T ]

(
R

(n,a)
k − 1

2

(
R

(n,a)
k

)2)

+ α
(
a,R

(n,a)
k , 0 ≤ k ≤ n

) ∑

1≤k≤[nt
T ]

(
R

(n,a)
k

)2
,
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where |α(a,R
(n,a)
k , 0 ≤ k ≤ n)| does not exceed a

3(1−a)3 a.s. It follows from condition
(B), (ii) and the Lenglart inequality ([18, Chapter 1, p. 66]) that for any a ∈ (0, 1]

lim
C→∞

lim sup
n→∞

Pn
( ∑

0≤k≤n

(
R

(n,a)
k

)2
≥ C

)
= 0. (3.8)

We fix an arbitrary δ > 0, apply condition (B), (ii) and find such C > 0 and n(δ, C)
that for n ≥ n(δ, C)

Pn
( ∑

0≤k≤n

(
R

(n,1)
k

)2
≥ C

)
< δ.

Therefore, with probability Pn, exceeding 1− δ,
∣∣∣α
(
a,R

(n,a)
k , 0 ≤ k ≤ n

)∣∣∣
∑

1≤k≤[nt
T ]

(
R

(n,a)
k

)2
<

Ca

3(1− a)3
.

Using the calculations above and conditions (B), (i) we can conclude that the
weak convergence of the measures corresponding to the processes {Y n, n ≥ 1},
{Y n,a =

∑
k:0≤Tk

n ≤•(R
(n,a)
k − 1

2 (R
(n,a)
k )2)}, {logSn, n ≥ 1} and {logSn,a, n ≥ 1}

holds simultaneously and implies the weak convergence of {Sn, n ≥ 1}. At first we
consider {Xn, n ≥ 1} and apply Theorem 3.2 with Q

(n)
k = R

(n)
k . It follows from

condition (B), (iv) that (3.6) holds. Furthermore, it follows from conditions (B), (i)
and (iii) that for any ε > 0

lim
n→∞

Pn
( ∑

1≤k≤n
(E(R

(n)
k 1|R(n)

k |≤a
|Fnk−1))2 ≥ ε

)
= 0.

Therefore, it follows from condition (B), (v) that (3.7) holds, and we get that
Xn W→ X. Now we can apply Theorem 6.26 from [13] and deduce from the weak
convergence above and condition (B), (iii) that {Xn, [Xn]} W→ {X, [X]}, where [·]
means the quadratic variation, X is a weak solution to SDE (2.3). As to [X], it equals∫ t
0
c2(s,Xs)ds. Therefore,

∑
1≤k≤[n·

T ](R
(n)
k )2

W→
∫ t
0
c2(s,Xs)ds and we conclude that

Y n
W→ X − 1

2

∫ t
0
c2(s,Xs)ds whence the proof follows.

4. A RECURRENT SCHEME FOR THE DIFFUSION APPROXIMATION
WHEN THE LIMIT PROCESS
IS A GEOMETRIC ORNSTEIN-UHLENBECK PROCESS

Let ΩF = (Ω,F , (Ft, t ∈ T),P) be a complete filtered probability space satisfying the
standard assumptions, and consider the adapted Ornstein-Uhlenbeck process with
constant parameters on this space

dXt = (µ−Xt)dt+ σdWt, X0 = x0 ∈ R, t ∈ T, (4.1)

where µ ∈ R and σ > 0.



108 Yuliya Mishura

We are in a position to construct a discrete scheme that weakly converges to the
geometric Ornstein-Uhlenbeck process which is given for technical convenience by
the formula St = exp{Xt − σ2

2 t}. In what follows we denote as C constant values
of which are not so important, and their values can be different from line to line.
Consider the following discrete approximation scheme. Assume we have a sequence
of the probability spaces (Ωn,Fn,Pn), n ≥ 1 and let {q(n)k , n ≥ 1, 0 ≤ k ≤ n} be the
sequence of iid random variables in the corresponding probability space, each with two
possible values ±

√
T
n , n → ∞ and Pn(q

(n)
k = ±

√
T
n ) = 1

2 . Let n > T . We introduce
the recurrent scheme:

x
(n)
0 ∈ R, R

(n)
k := x

(n)
k − x(n)k−1 =

(µ− x(n)k−1)T

n
+ σq

(n)
k , 1 ≤ k ≤ n. (4.2)

Let Fn0 = {∅,Ω} and Fnk = σ{R(n)
i , 1 ≤ i ≤ k}. Denote Xn

t =
∑

1≤k≤[nt
T ]R

(n)
k =

x
(n)

[ tnT ]
1t≥T

n
, let Qn be the measure corresponding to the process

Snt = exp{x(n)0 }
∏

1≤k≤[nt
T ]

(
1 +R

(n)
k

)
, t ∈ T

and Q be the measure that corresponds to the process St = exp{Xt − σ2

2 t}.

Theorem 4.1. Let x(n)0 → x0, n→∞. Then the weak convergence Qn
W→ Q holds.

Proof. According to Theorem 3.3, we need to check conditions (B) and (C). However,
(C) is evident, so we need to check only (B). At first, we mention that the random
variables x(n)k can be presented as

x
(n)
k = x

(n)
0

(
1− T

n

)k
+ µ

(
1−

(
1− T

n

)k)
+ σ

k∑

i=1

q
(n)
i

(
1− T

n

)k−i
, (4.3)

whence there exists a constant C > 0 such that sup0≤k≤n |x(n)k | ≤ C
√
n a.s. Therefore,

sup0≤k≤n |R(n)
k | ≤ C√

n
a.s. and it means that the condition (B), (i) holds. Furthermore,

in order to establish (B), (ii), we consider any fixed a ∈ (0, 1] and such n0 that
C√
n0
≤ a. Then for any n ≥ n0 we have that

∑

0≤k≤n
E((R

(n)
k )21|R(n)

k |≤a
/Fnk−1) ≤ C
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for some C > 0 whence condition (B), (ii) follows. To establish (B), (iii), we should
note that in our case for any ε > 0, a ∈ (0, 1] and n ≥ n0

lim
n

Pn
(

sup
t∈T

∣∣∣
∑

1≤k≤[nt
T ]

E(R
(n)
k 1|R(n)

k |≤a
|Fnk−1)−

t∫

0

b(s,Xn
s )ds

∣∣∣ ≥ ε
)

= lim
n

Pn
(

sup
t∈T

∣∣∣
∑

1≤k≤[nt
T ]

E(R
(n)
k |Fnk−1)−

t∫

0

(µ−Xn
s )ds

∣∣∣ ≥ ε
)

= lim
n

Pn
(

sup
t∈T

∣∣∣∣
∑

1≤k≤[nt
T ]

(µ− x(n)k−1)T

n
−

∑

1≤k≤[nt
T ]−1

(µ− x(n)k )T

n

− (µ− xn[nt
T ])

(
t− [ntT ]T

n

) ∣∣∣∣ ≥ ε
)

= lim
n

Pn
(

sup
t∈T

∣∣∣∣
(µ− x(n)0 )T

n
− (µ− xn[nt

T ])

(
t− [ntT ]T

n

) ∣∣∣∣ ≥ ε
)

= 0.

Now let us check the condition (B), (iv). At first we shall prove that

lim
C→∞

lim sup
n

Pn
(

max
1≤k≤n

|x(n)k | ≥ C
)

= 0.

Due to representation (4.3), it is enough to prove that

A := lim
C→∞

lim sup
n

Pn
(

max
1≤k≤n

∣∣∣
k∑

i=1

q
(n)
i

(
1− T

n

)k−i ∣∣∣ ≥ C
)

= 0.

But the last assertion follows immediately from the Kolmogorov’s inequality for the
sums of iid random variables: A ≤ C−2T = 0. Now, we have that for any ε > 0 and
a ∈ (0, 1]

lim
n

Pn
(

sup
t∈T

∣∣∣
∑

1≤k≤[nt
T ]

E
((
R

(n)
k

)2
1|R(n)

k |≤a
|Fnk−1

)
−

t∫

0

c2(s,Xn
s )ds

∣∣∣ ≥ ε
)

= lim
n

Pn
(

sup
t∈T

∣∣∣
∑

1≤k≤[nt
T ]

E
((
R

(n)
k

)2
|Fnk−1

)
− σ2t

∣∣∣ ≥ ε
)

= lim
n

Pn
(

sup
t∈T

∣∣∣
∑

1≤k≤[nt
T ]

(
(µ− x(n)k )T

n

)2

+ σ2
[nt
T

]T
n
− σ2t

∣∣∣ ≥ ε
)

≤ lim
C→∞

lim sup
n

Pn
(

max
1≤k≤n

|x(n)k | ≥ C
)

+ lim
n

Pn
(

sup
t∈T

(
σ2t− σ2

[nt
T

]T
n

+
(|µ|+ C)2T 2

n

)
≥ ε
)

= 0,
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and (B), (iv) holds. The condition (B), (v): for any ε > 0 and a ∈ (0, 1]

lim
n

Pn
( ∑

1≤k≤n
(E(R

(n)
k 1|R(n)

k |≤a
|Fnk−1))2 ≥ ε

)

= lim
n

Pn


 ∑

1≤k≤n

(
(µ− x(n)k )T

n

)2

≥ ε




≤ lim
C→∞

lim sup
n

Pn( max
1≤k≤n

|x(n)k | ≥ C) + lim
n

Pn
(

(|µ|+ C)2T 2

n
≥ ε
)

= 0.

The theorem is proved.

5. THE PRELIMIT AND LIMIT ORNSTEIN-UHLENBECK MARKETS
ARE ARBITRAGE-FREE AND COMPLETE

In this section we consider the prelimit discrete discounted Ornstein-Uhlenbeck market

Y nt =
Snt
Bnt

= exp{x(n)0 }
∏

1≤k≤[nt
T ]

1 +R
(n)
k

1 + r
(n)
k

,

where R(n)
k are defined via (4.2), {r(n)k |1 ≤ k ≤ n, n ≥ 1} is the non-random interest

rate,
Bnt =

∏

1≤k≤[nt
T ]

(
1 + r

(n)
k

)
,

r
(n)
k satisfy the assumptions sup1≤k≤n r

(n)
k → 0 and Bnt → ert, n→∞.

Theorem 5.1. Let r(n)k = o( 1√
n

) and the sequence x(n)0 be bounded. Then there exists
n0 such that for any n > n0 the prelimit market (Bnt , Y

n
t ) is arbitrage free and com-

plete.

Proof. We look for such probability measures Pn,∗ that Pn,∗ ∼ Pn and for which

EPn,∗(Y nt |Fns ) = Y ns , (5.1)

where

Fns = σ
{
R

(n)
i , 1 ≤ i ≤

[ns
T

]}
= σ

{
q
(n)
i , 1 ≤ i ≤

[ns
T

]}
.

The relation (5.1) is equivalent to

EPn,∗
(
Y

(n)
kT
n

|F (n)
k−1
)

= Y
(n)
(k−1)T

n

, 1 ≤ k ≤ n, (5.2)
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where F (n)
k−1 = σ{q(n)i , 1 ≤ i ≤ k − 1}. Let

dPn,∗

dPn
=

n∏

k=1

(1 + ∆Mn
k ),

where {Mn
k , 1 ≤ k ≤ n} is some Fnk - martingale, ∆M

(n)
k > −1. Evidently, the mar-

tingale Mn admits the representation

Mn
k =

k∑

i=1

ρ
(n)
i−1q

(n)
i ,

where ρ(n)i−1 is F (n)
i−1 - adapted. Therefore,

dPn,∗

dPn
=

n∏

k=1

(1 + ρ
(n)
k−1q

(n)
k ). (5.3)

The equality (5.2) is equivalent to

EPn

(
dPn,∗

dPn Y nkT
n

|Fnk−1
)

EPn

(
dPn,∗
dPn |Fnk−1

) = Y n(k−1)T
n

, 1 ≤ k ≤ n.

We have the equivalent relations:

EPn

(dPn,∗
dPn

1 +R
(n)
k

1 + r
(n)
k

|Fnk−1
)

= EPn

(dPn,∗
dPn

|Fnk−1
)
,

EPn

(dPn,∗
dPn

R
(n)
k |Fnk−1

)
= r

(n)
k EQn

(dPn,∗
dPn

|Fnk−1
)
,

EPn

((
1 + ρ

(n)
k−1q

(n)
k

)((
µ− x(n)k−1

)
Tn−1 + σq

(n)
k

)
|Fnk−1

)
= r

(n)
k ,

(
µ− x(n)k−1

)
Tn−1 + σ E

((
1 + ρ

(n)
k−1q

(n)
k

)
q
(n)
k |Fnk−1

)
= r

(n)
k .

(5.4)

Denote y(n)k = r
(n)
k −

(
µ− x(n)k−1

)
Tn−1. Then we immediately get from (5.4) that

ρ
(n)
k−1 =

ny
(n)
k

σT
and ρ

(n)
k−1q

(n)
k =

y
(n)
k

σq
(n)
k

.

To provide the arbitrage-free property and completeness, we only have to check the

inequality y
(n)
k

σq
(n)
k

> 1. The latter inequality will follow from the relation

|y(n)k | < σ

√
T

n
.
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Note that it follows from (4.3) that

x
(n)
k − µ = (x

(n)
0 − µ)

(
1− T

n

)k
+ σ

k∑

i=0

q
(n)
i

(
1− T

n

)k−i
, (5.5)

whence

r
(n)
k +

(
T

n
(x

(n)
0 − µ) + σ

√
T

n

)(
1− T

n

)k
− σ

√
T

n
≤ r(n)k +

(x
(n)
k − µ)T

n

≤ r(n)k +

(
T

n
(x

(n)
0 − µ)− σ

√
T

n

)(
1− T

n

)k
+ σ

√
T

n
.

(5.6)

Evidently, if r(n)k = o( 1√
n

) and x(n)0 is bounded, then for sufficiently large n

r
(n)
k +

(
T

n
(x

(n)
0 − µ) + σ

√
T

n

)(
1− T

n

)k
> 0,

and

r
(n)
k +

(
T

n
(x

(n)
0 − µ)− σ

√
T

n

)(
1− T

n

)k
< 0.

For such n the prelimit market (B
(n)
t , Y nt ) is arbitrage-free and complete.

As to the limit process, the discounted price process has form

Yt = exp
{
Xt −

σ2

2
t− rt

}
= exp

{
x0e
−t + µ

(
1− e−t

)
+ σ

t∫

0

es−tdWs −
σ2

2
t− rt

}

= exp

{ t∫

0

(µ−Xs) ds+ σWt + x0 −
σ2

2
t− rt

}
.

We look for a measure P∗ ∼ P that w.r.t. P∗ Y is a martingale. Evidently, the
Radon-Nikodym derivative equals to dP∗

dP

∣∣∣
T
, where

dP∗

dP

∣∣∣
t

= exp

{
−

t∫

0

µ− r −Xs

σ
dWs −

1

2

t∫

0

(
(µ− r −Xs)

2

σ2
ds

)}
.

But this is correct only if the last relation corresponds to the martingale. According to
[16], the process ϕt(β) = exp

{ ∫ t
0
βsdWs − 1

2

∫ t
0
β2
sds
}
is a martingale on the interval

[0, T ] if β is a Gaussian process with

sup
t≤T

E|βt| <∞
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and
sup
t≤T

Eβ2
t <∞.

In our case βt = −µ−r−Xt

σ and, up to the constant terms, Eβ2
t ∼ EX2

t ∼ et, whence
dP∗

dP defines a new martingale measure on any interval [0, T ]. Therefore, the limit
market is arbitrage-free and complete.

6. CONVERGENCE OF THE BOND PRICES
IN THE GEOMETRIC ORNSTEIN-UHLENBECK MODEL

Suppose that we have an option on a stochastic risk-free rate that is governed by the
geometric Ornstein-Uhlenbeck (Vasicek) model. The Ornstein-Uhlenbeck process was
used by Vasicek in [22] in deriving an equilibrium model of discount bond prices. This
Gaussian process has been used extensively by the other scientists in valuing bond
options, futures, futures options, and other types of contingent claims. The examples
include [8,9,14,15]. The motivation of considering the geometric Ornstein-Uhlenbeck
process is in its price recovery effect that is supplied by its mean reverting property.
If we want to establish the convergence of option prices, we need the joint conver-
gence of the bond prices and the Radon-Nikodym derivatives. For this we apply the
multidimensional functional limit theorem from [13].

Theorem 6.1. Let r(n)k = rT
n , n ≥ 1, 1 ≤ k ≤ n and let x(n)0 → x0 as n → ∞. Then

the joint weak convergence holds:
{dPn,∗
dPn

∣∣∣
·
, Y n

}
W→
{dP∗
dP

∣∣∣
·
, Y
}
,

where the prelimit process of the Radon-Nikodym derivative is defined as

dPn,∗

dPn

∣∣∣
t

=
∏

1≤k≤
[

nt
T

](1 + ρ
(n)
k−1q

n
k ).

Proof. We can use the same representations and reasonings that have been used in the
general case when we proved Theorem 4.1. Namely, we present the Radon-Nikodym
derivative as

dPn,∗

dPn

∣∣∣
t

= exp

{ ∑

1≤k≤
[

nt
T

] log(1 + ρ
(n)
k−1q

n
k )

}

= exp

{ ∑

1≤k≤
[

nt
T

]
(
ρ
(n)
k−1q

(n)
k − 1

2
(ρ

(n)
k−1)2

T

n

)}
+OP (n, t)

= exp

{ ∑

1≤k≤
[

nt
T

]
r − µ+ x

(n)
k−1

σ
q
(n)
k − 1

2

(r − µ+ x
(n)
k−1

σ

)2T
n

}
+OP (n, t),

(6.1)
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where we do not present the exact form of the remainder term OP (n, t), but it can
be bounded similarly to α(a,R

(n,a)
k , 0 ≤ k ≤ n)

∑
1≤k≤[nt

T ](R
(n,a)
k )2 from the proof of

Theorem 3.2 and sup0≤t≤T OP (n, t)→ 0 in probability as n→∞.
Furthermore,

Y
(n)
t = exp




x
(n)
0 +

∑

1≤k≤
[

nt
T

]
(µ− x(n)k−1)T

n
+ σ

∑

1≤k≤
[

nt
T

] q
(n)
k − σ2t

2
− rt





+OP (n, t).

So, we have to establish the joint weak convergence of the couple of processes

{ ∑

1≤k≤
[

nt
T

]
(µ− x(n)k−1)T

n
,

∑

1≤k≤
[

nt
T

]
(r − µ+ x

(n)
k−1

σ

)2T
n

}

to the couple of the processes





·∫

0

r − µ+Xs

σ
dWs,W·,

·∫

0

(r − µ+Xs)
2

σ2
ds,

·∫

0

(µ−Xs)ds



 .

We can apply Theorem 5.16 (p. 569) from [13] for the multidimensional weak con-
vergence of semi-martingales because the first pair of the components of the prelimit
process are martingales and the second two components can be interpreted as the
processes of bounded variation. We omit the tedious details of the condition verifica-
tion of this theorem since in our simple case they hold evidently. According to this
theorem, the joint weak convergence holds and the proof follows.

Remark 6.2. We can assume only that max1≤k≤n |nr(n)k − r Tn | → 0 as n→∞.

Corollary 6.3. It follows from Theorem 6.1 that the option prices converge for call
and put options as well as for any other options whose price is the functional that is
continuous in a Skorokhod topology, for example, Asian options.

Remark 6.4. Returning to the applicability of the geometric Ornstein-Uhlenbeck
(Vasicek) model in the finance, it is no doubt that the interest rate is often supposed
to follow this model. The paper [23] is one of the recent examples of modeling a
stochastic interest rate by the Vasicek model. However, there are some reasons in
favor of the Vasicek model even if we consider stock prices. One of the reasons is that
in the standard Black-Scholes model the variance of the total profit

∫ T
0

dSt

St
equals

σ2T → ∞ as T → ∞ while in real markets it often tends to a finite value which is
true for the Vasicek model.
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