Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The dynamics of the Banda Sea can influence larger-scale oceanic processes and contribute to the global ocean circulation system. This research aims to utilize data from a global in situ data repository spanning the years 1960 to 2018, along with data collected from 12 stations during the recent Jalacitra II-2022 expedition. The focus is on analyzing salinity and potential temperature data to construct water mass features, including seasonal temperature-salinity-time diagrams and water column stability using Brunt Vaisala Frequency. Thorpe analysis is employed to investigate turbulent mixing within the region. The results found that temperatures are notably lower in Northwest Monsoon (NWM), reaching 30.0°C, while Southeast Monsoon (SEM) temperatures hover around 28.0°C. Salinity profiles reveal that SEM generally exhibits lower salinity levels, ranging from 33.5 to 34.4, compared to NWM, which ranges from 34.0 to 34.5. Vertical profiles of temperature and salinity variations in the SEM display a more varied thermocline layer depth than NWM. Data from the JC II expedition in the Banda Sea revealed a slight temperature decrease from 27.5°C to 26°C in August, accompanied by salinity variations. Surface salinity was measured at 33.3, while a uniform salinity of 34.6 was observed from 100 meters downward during the same period. This study identifies five dominant water mass types in the Banda Sea, primarily from the Pacific Ocean, which are North Pacific Intermediate Water (NPIW) and North Pacific Subtropical Water (NPSW). During the NWM season, water column instability occurs at depths up to 200 meters, while deeper water column instability is observed during the SEM, extending to a depth of 300 meters, with stability values lower than four cycles/hour. Furthermore, high turbulence generally occurs in the thermocline layer (50 to 300 m).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
Art. no. 67201, 18 pp.
Opis fizyczny
Bibliogr. 52 poz., map., rys., tab., wykr.
Twórcy
autor
- Department of Marine Science, Padjadjaran University, Bandung, Indonesia
- Indonesia National Committee, Intergovernmental Oceanographic Commission (IOC) – UNESCO, Jakarta, Indonesia
autor
autor
- Directorate of Research Vessel Management, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
autor
- Research Centre for Geological Disaster, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
autor
- nstitute of Oceanography and Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
autor
- Department of Marine Science, Padjadjaran University, Bandung, Indonesia
autor
- KomitmenX Research Group, Padjadjaran University, Bandung, Indonesia
autor
- 7KomitmenX Research Group, Padjadjaran University, Bandung, Indonesia
autor
- Centre for Hydro-Oceanography, Indonesian Navy, Jakarta, Indonesia 9Department of Geology, Padjadjaran University, Bandung, Indonesia
autor
- Centre for Hydro-Oceanography, Indonesian Navy, Jakarta, Indonesia
autor
- Centre for Hydro-Oceanography, Indonesian Navy, Jakarta, Indonesia
autor
- Department of Geology, Padjadjaran University, Bandung, Indonesia
autor
- Department of Geology, Padjadjaran University, Bandung, Indonesia
Bibliografia
- 1. Atmadipoera, A., Molcard, R., Madec, G., Wijffels, S., Sprint-all, J., Koch-Larrouy, A., Jaya, I., Supangat, A., 2009. Characteristics and variability of the Indonesian through-flow water at the outflow straits. Deep Sea Res. Pt. I, 56 (11), 1942–1954. https://doi.org/10.1016/j.dsr.2009.06.004
- 2. Atmadipoera, A.S., Prartono, T., Jaya, I., Nugroho, D., Harsono, G., Nanlohy, P., Koch-Larrouy, A., 2019. Seasonal variation of the upper-layer seawater properties in the Banda Sea: Observed from an autonomous CTD Argo 5/278/1/012008
- 3. Balsamo, G., Agusti-Panareda, A., Albergel, C., et al., 2018. Satellite and in situ observations for advancing global earth surface modelling: A review. Remote Sens. 10 (12), 1-72. https://doi.org/10.3390/rs10122038
- 4. Bayhaqi, A., Iskandar, I., Surinati, D., Budiman, A.S., Wardhana, A.K., Dirhamsyah, Yuan, D., Lestari, D.O., 2018. Water mass characteristic in the outflow region of the Indonesian throughflow during and post 2016 negative Indian ocean dipole event. IOP Conf. Ser. Earth Environ. 149 (1), 1-10. https://doi.org/10.1088/1755-1315/149/1/012053
- 5. Birowo, S., 1984. Ekspedisi ilmiah kelautan Snellius II, Indonesia – Belanda (Juli 1984–Juli 1985). LIPI, Jakarta, 23-42.
- 6. Boyer, T.P., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., Locarnini, R.A., Mishonov, A.V., Paver, C.R., Reagan, J.R., Seidov, D., Smolyar, I.V., Weathers, K.W., Zweng, M.M., 2018. NOAA Atlas NESDIS 87. World Ocean Database 2018.
- 7. Bray, N.A., Hautala, S., Chong, J., Pariwono, J., 1996. Large scale sea level, thermocline, and wind variations in the Indonesian throughflow region. J. Geophys. Res. 101 (C5), 12239-12254. https://doi.org/10.1029/96JC00080
- 8. Cai, S., He, Y., Wang, S., Long, X., 2009. Seasonal upper circulation in the Sulu Sea from satellite altimetry data and a numerical model. J. Geophys. Res. 114 (3), 14. https://doi.org/10.1029/2008JC005109
- 9. Cheng, L., Zhu, J., Cowley, R., Boyer, T., Wijffels, S., 2014. Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Ocean. Tech. 31 (8), 1793-1825. https://doi.org/10.1175/JTECH-D-13-00197.1
- 10. Dippner, J.W., Weber, S.C., Subramaniam, A., 2021. Impact of climate variability of the Western Tropical Pacific on maximum salinity water in the South China Sea. Ocean. Dynam. 71 (10), 1033-1049.
- 11. Emery, W.J., 2015. Oceanographic Topics: Water Types and Water Masses. Enc. Atmos. Sci. 329-337. https://doi.org/10.1016/B978-0-12-382225-3.00279-6
- 12. Febriawan, H.K., Nugroho, A.B., Alodia, G., Hascaryo, A., Fadillah, A., Aryanto, N.C.D., Haryanto, D., Muljana, B., Endyana, C., Purba, N.P., 2023. Nieuwerkerk – Emperorof China (NEC) Seamounts (Banda Sea): A multibeam seafloor imagery analysis. IOP Conf. Ser. Earth Environ. 1163 (1), 012018. https://doi.org/10.1088/1755-1315/1163/1/012018
- 13. Feng, M., Zhang, N., Liu, Q., Wijffels, S., 2018. The Indonesian throughflow, its variability and centennial change. Geosci. Lett. 5 (1). https://doi.org/10.1186/s40562-018-0102-2
- 14. Fieux, M., Andrié, C., Delecluse, P., Ilahude, A. G., Kartavtseff, A., Mantisi, F., Molcard, R., Swallow, J.C., 1994. Measurements within the Pacific-Indian oceans throughflow region. Deep-Sea Res. Pt. I, 41 (7), 1091-1130.
- 15. Gordon, A.L., Fine, R.A., 1996. Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature 379 (6561), 146-149.
- 16. Gusviga, B.H., Subiyanto, Faizal, I., Yusri, S., Sari, S. K., Purba, N.P., 2021. Occurrence and Prediction of Coral Bleaching Based on Ocean Surface Temperature Anomalies and Global Warming in Indonesian Waters. IOP Conf. Ser. Earth Environ. 750 (1), 1-13. https://doi.org/10.1088/1755-1315/750/1/012032
- 17. Hanifah, F., Ningsih, N.S. 2016. The characteristic of eddies in the Banda Sea. Adv. Appl. Fluid Mech. 19 (4), 889-902. https://doi.org/10.17654/FM019040889
- 18. Horhoruw, S.M., Fadli, M., Atmadipoera, A., Lekalette, J.,Nugroho, D.Y., Tatipatta, W.M., Kainama, F. 2020. Horizontal Structure of Banda Eddies and the Relationship to Chlorophyll-a during South East Monsoon in Normal and ENSO Period on 2008-2010. IOP Conf. Ser. Earth Environ. 618 (1). https://doi.org/10.1088/1755-1315/618/1/012011
- 19. Ilahude, A.G., Muchtar, M., Praseno, D.P., Hadikusumah, A., Ruyitno, N., Simanjuntak, M., Sutomo, A.B., Adnan, Q. 1999. Hydrology of the Mamberamo Plume, Irian Jaya. Proc. Indo-Tropics Workshop, 6-7.
- 20. Jackett, D.R., McDougall, T.J., Feistel, R., Wright, D.G., Griffies, S.M., 2006. Algorithms for density, potential temperature, conservative temperature, and the freezing temperature of seawater. J. Atmos. Ocean. Tech. 23 (12), 1709-1728. https://doi.org/10.1175/JTECH1946.1
- 21. Johari, A., Akhir, M. F. 2019. Exploring thermocline and water masses variability in southern South China Sea from the World Ocean Database (WOD). Acta Oceanol. Sin. 38, 38-47.
- 22. Johnson, G.C., Lyman, J.M. 2020. Warming trends increasingly dominate global ocean. Nat. Clim. Change 10 (8), 757-761. https://doi.org/10.1038/s41558-020-0822-0
- 23. Katavouta, A., Polton, J.A., Harle, J.D., Holt, J.T., 2022. Effect of Tides on the Indonesian Seas Circulation and Their Role on the Volume, Heat and Salt Transports of the Indonesian Throughflow. J. Geophys. Res. 127 (8). https://doi.org/10.1029/2022JC018524
- 24. Kida, S., Wijffels, S. 2012. The impact of the Indonesian Throughflow and tidal mixing on the summertime sea surface temperature in the western Indonesian Seas. J. Geophys. Res. 117 (C9).
- 25. Lana, A.B., Kurniawati, N., Purba, N.P., Syamsuddin, M.L. 2017. Thermocline Layers Depth and Thickness in Indonesian Waters when Southeast Monsoon. Omni Akuatika 37 (08), 36-41. https://doi.org/10.1002/jor.23509
- 26. Lange, M., van Sebille, E. 2017. Parcels v0.9: Prototyping a Lagrangian ocean analysis framework for the petascale age. Geosci. Model. Dev. 10 (11), 4175-4186. https://doi.org/10.5194/gmd-10-4175-2017
- 27. Liang, L., Xue, H., Shu, Y., 2019. The Indonesian Throughflow and the Circulation in the Banda Sea: A Modeling Study. J. Geophys. Res. 124 (5), 3089-3106. https://doi.org/10.1029/2018JC014926
- 28. Makarim, S., Sprintall, J., Liu, Z., Yu, W., Santoso, A., Yan, X.-H., Susanto, R.D., 2019. Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades. Sci. Rep.-UK, 9 (1), 7364. https://doi.org/10.1038/s41598-019-43841-z
- 29. McCreary, J.P., Miyama, T., Furue, R., Jensen, T., Kang, H.W., Bang, B., Qu, T. 2007. Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans. Progr. Oceanogr. 75 (1), 70-114. https://doi.org/10.1016/j.pocean.2007.05.004
- 30. Molcard, R., Fieux, M., Syamsudin, F., 2001. The through flow within Ombai Strait. Deep-Sea Res. Pt. I 48 (5), 1237-1253.
- 31. Moore, T.S., Marra, J., Alkatiri, A. 2003. Response of the Banda Sea to the southeast monsoon. Mar. Ecol. Prog. Ser. 261, 41-49. https://doi.org/10.3354/meps261041
- 32. Nugraha, A.P., Purba, N.P., Junianto, Sunarto. 2018. Ocean Currents , Temperature, and Salinity at Raja Ampat Islands and The Boundaries Seas. World Sci. News 110 (September), 197-209.
- 33. Nuzula, F., Syamsudin, M.L., Yuliadi, L.P.S., Purba, N.P., Martono. 2017. Eddies spatial variability at Makassar Strait – Flores Sea. IOP Conf. Ser. Earth Environ. 54 (1). https://doi.org/10.1088/1755-1315/54/1/012079
- 34. Pei, S., Shinoda, T., Steffen, J., Seo, H., 2021. Substantial Sea Surface Temperature Cooling in the Banda Sea Associated With the Madden-Julian Oscillation in the Boreal Winter of 2015. J. Geophys. Res. 126 (6), e2021JC017226. https://doi.org/10.1029/2021JC017226
- 35. Purba, N.P., Damanik, F.S., 2021. Seasonal Water Mass Transformation in Sulu and Surrounding Seas. World Sci. News 153 (2), 142-156.Purba, N.P., Khan, A.M.A., 2019. Upwelling Session in Indonesia Waters. World News Nat. Sci. 25 (June), 72-83.
- 36. Purba, N.P., Pranowo, W.S., Ndah, A.B., Nanlohy, P., 2021. Seasonal variability of temperature, salinity, and surface currents at 0° latitude section of Indonesia seas.Reg. Stud. Mar. Sci. 44, 101772. https://doi.org/10.1016/j.rsma.2021.101772
- 37. Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., Atmadipoera, A.S., 2020. Historical CTD dataset and associated processed dissipation rate using an improved Thorpe method in the Indonesian seas. Data in Brief. 30. https://doi.org/10.1016/j.dib.2020.105519
- 38. Pusparini, N., Prasetyo, B., Ambariyanto, Widowati, I., 2017. The Thermocline Layer and Chlorophyll-a Concentration Variability during Southeast Monsoon in the Banda Sea. IOP Conf. Ser. Earth Environ. 55 (1), 012039. https://doi.org/10.1088/1755-1315/55/1/012039
- 39. Schlitzer, R., 2022. Ocean Data View. https://odv.awi.de
- 40. Sprintall, J., Gordon, A.L., Koch-Larrouy, A., Lee, T., Potemra, J.T., Pujiana, K., Wijffels, S.E., 2014. The Indonesian seas and their role in the coupled ocean-climate system. Nat. Geosci. 7 (7), 487-492. https://doi.org/10.1038/ngeo2188
- 41. Sprintall, J., Gordon, A.L., Wijffels, S.E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A.,Pujiana, K., Dwi Susanto, R., Sloyan, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani, A., Arifin, Z., Wahyudi, A.J., Zhou, H., Nagai, T., Ansong, J.K., Bourdalle-Badié, R., Chanut J., Lyard, F., Arbic, B.K., Ramdhani, A., Setiawan, A., 2019. Detecting change in the Indonesian seas. Front. Mar. Sci. 6, 257. https://doi.org/10.3389/fmars.2019.00257
- 42. Sprintall, J., Timothy Liu, W., 2005. Ekman mass and heat transport in the Indonesian seas. Oceanography 18 (Sp. Iss. 4), 88-97. https://doi.org/10.5670/OCEANOG.2005.09
- 43. Susanto, R.D., Fang, G., Soesilo, I., Zheng, Q., Qiao, F., Wei, Z., Sulistyo, B., 2010. New surveys of a branch of the Indonesian throughflow. T. Am. Geophys. Un. 91 (30), 261-263. https://doi.org/10.1029/2010EO300002
- 44. Talley, L.D., Sprintall, J., 2005. Deep expression of the Indonesian Throughflow: Indonesian Intermediate Water in the South Equatorial Current. J. Geophys. Res. 10 (10), 1-30. https://doi.org/10.1029/2004JC002826
- 45. Tillinger, D., Gordon, A.L,. 2009. Fifty years of the Indonesian throughflow. J. Climate, 22 (23), 6342-6355. https://doi.org/10.1175/2009JCLI2981.1
- 46. Tomczak, M., Godfrey, J.S., 2003. Regional oceanography: an introduction. Daya Books, New Delhi.
- 47. Van Aken, H.M., Brodjonegoro, I.S., Jaya, I., 2009. The deep-water motion through the Lifamatola Passage and its contribution to the Indonesian throughflow. Deep-Sea Res. Pt. I, 56 (8), 1203-1216.
- 48. Vinayachandran, P.N.M., Masumoto, Y., Roberts, M., Hugget, J., Halo, I., Chatterjee, A., Amol, P., Gupta, G., Singh, A., Mukherjee, A., Prakash, S., Beckley, L., Raes, E.J., Hood, R., 2021. Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean. Biogeosciences Discuss. 18 (2),5967-6029. https://doi.org/10.5194/bg-2020-486
- 49. Wyrtki, K., 1961. Physical oceanography of the Southeast Asian waters. Vol. 2, Univ. California, Scripps Inst. Oceanogr., California.
- 50. Zeng, L., Wang, D., Chen, J., Wang, W., Chen, R., 2016. SC-SPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919-2014. Sci. Data, 3 (1), 1-13.
- 51. Zhu, Y., Wang, L., Wang, Y., Xu, T., Li, S., Cao, G., Wei, Z., Qu, T., 2019. Stratified Circulation in the Banda Sea and Its Causal Mechanism. J. Geophys. Res. 124 (10), 7030-7045. https://doi.org/10.1029/2019JC015279
- 52. Zubaedah, S., Setiyono, H., Puspita, C.D., Gusmawati, N. F., Pranowo, W.S., 2021. Schematic Model of Ocean Pacific Seawater Mass Circulation in Banda Sea. IOP Conf. Ser. Earth Environ. 750 (1). https://doi.org/10.1088/1755-1315/750/1/012009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9190f059-6cce-4fe8-b3ba-45818dbda702
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.