Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article is devoted to the experimental determination of thermokinetic parameters of oil sludge thermal degradation using the model-free Ozawa-Flynn-Wall method in the presence of a nanocatalyst (nickel, cobalt and iron-supported microsilicate) by calculating Arrhenius kinetic parameters (activation energy and pre-exponential factor). The phase composition of the reflex microsilicate was established – 4.12; 2.51 Å – SiO2, nickel-supported microsilicate reflexes: 2.09; 1.48 Å – NiO, reflexes: 4.25 Å – SiO2 and acid numbers of microsilicate – 64 μmol/g of prepared nanocatalysts. Using the method of Brunauer, Emmett and Teller, the specific surface area of the microsilicate was established – 18.3 ± 0.3 m2 /g, the microsilicate with nickel applied – 20.9 ± 0.2 m2 /g and the adsorption isotherm of the prepared nanocatalysts (microsilicate with nickel, cobalt and iron). Thermokinetic parameters of thermal decomposition of oil sludge without a catalyst and with a catalyst at an increment of 0.9 are 99.0 and 93.3 kJ/mol nickel-supported microsilicate, 51.9 kJ/mol cobalt-supported microsilicate, 111.3 kJ/mol iron-supported microsilicate and non-metal-supported microsilicate 173.7 kJ/mol, respectively. The study of the kinetic parameters of pyrolysis of oil sludge using various catalysts makes it possible to assess their influence on the process of decomposition of organic components. The results of the experiments showed that the use of catalysts significantly affects the destruction of oil sludge. Dynamic thermal analysis at different heating rates studied the dynamics of oil sludge decomposition. The study of the effect of catalysts on the kinetic parameters of oil sludge pyrolysis is an important step in the development of new methods for the disposal of petroleum products and the reduction of their negative impact on the environment. The obtained experimental data on thermal degradation kinetics of oil sludge will find application in designing a reactor for the process of destructive hydrogenation of heavy hydrocarbon raw materials.
Czasopismo
Rocznik
Tom
Strony
101--109
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
autor
- Karaganda Buketov University, Faculty of Chemistry, Department of Chemical Technologies and petrochemicals, Karaganda 100024, Kazakhstan
autor
- Karaganda Buketov University, Faculty of Chemistry, Department of Chemical Technologies and petrochemicals, Karaganda 100024, Kazakhstan
autor
- Xinjiang University, Urumqi, XUAR, 830046,People’s Republic of China
autor
- Kazakh Agro Technical University Named after Saken Seifullin, Agronomic Faculty, The Department of Soil Science and Agrochemisrty, Astana 010000, Kazakhstan
autor
- Karaganda Buketov University, Faculty of Chemistry, Department of Chemical Technologies and petrochemicals, Karaganda 100024, Kazakhstan
autor
- Baitursynov Kostanay Regional University, Kostanay 110000, Kazakhstan
autor
- Karaganda Medical University, Karaganda, 100012, Kazakhstan
autor
- Karaganda Buketov University, Faculty of Chemistry, Department of Chemical Technologies and petrochemicals, Karaganda 100024, Kazakhstan
autor
- Karaganda Buketov University, Faculty of Chemistry, Department of Chemical Technologies and petrochemicals, Karaganda 100024, Kazakhstan
autor
- Karaganda Buketov University, Faculty of Chemistry, Department of Chemical Technologies and petrochemicals, Karaganda 100024, Kazakhstan
Bibliografia
- 1. Qu, Y., Li, A., Wang, D., Zhang, L. & Ji, G. (2019). Kinetic study of the effect of in-situ mineral solids on pyrolysis process of oil sludge. Chem. Eng. J. 374, 338–346. DOI: 10.1016/j.cej.2019.05.183.
- 2. Berezhnoy, S.B. & Barko, V.I. (2003). Environmentally friendly method of oil sludge utilization. Life safety. 9, 48—50 from http://novtex.ru/bjd/annot9.htm#12
- 3. Chalov, K.V., Lugovoy, Y.V., Sulman, E.M. & Kosivtsov, Y.Y. (2015). Kinetic study of pyrolysis of oily wastes in the presence of cobalt chloride. Herald of TvSU. Series: «Chemistry». 4, 52–59. DOI: 10.9767/bcrec.11.3.572.330-338.
- 4. Mazlova, E.A. & Meshcheryakov, C.B. (2001). Problems of oil sludge utilization and methods of their processing (p. 495). M.: Publishing house “Noosphere”.
- 5. Krasnogorskaya, N.N., Magid, A.B. & Trifonova, N.A. (2004). Oil sludge disposal. Oil and gas business. 2(10), 217–222.
- 6. Bikkulov, A.Z., Nigmatullin, R.G., Kamalov, A.K. & Sholom, V.Y. (1997). Organic oil deposits and their utilization (p.180). Ufa: Ufa State aviation transport university.
- 7. Zharov, O.A., Krivoshein, A.K. & Smirnov, S.V. (2003). Modern Russian technologies (p.189). Yaroslavl:Ecoline.
- 8. Chalov, K.V., Lugovoy, Yu.V., Doluda, V.Y., Sidorov, A.I., Sulman, M.G., Kosivtsov, Y.Y., Tkachenko, O.P. & Sulman, E.M. (2014). Influence of metals chlorides on oil-slime thermocatalytic processing. Chem. Eng. J. 238, 219–226. DOI: 10.1016/j.cej.2013.09.048.
- 9. Strizhakov, D.A., Yusevich, A.I., Yurachka, V.V., Kadiev, Kh.M., Agabekov, V.E. & Khadzhiev, S.N. (2016). Kinetics of thermolysis of vacuum tower bottoms mixed with pine sawdust. Pet. Chem. 56, 703–710. DOI: 10.1134/S0965544116080168.
- 10. Tyanakh, S., Baykenov, M.I., Tusipkhan, A., Aitbekova, D.E., Balpanova, N.Zh. & Ma Fan Yung (2022). Kinetic study of the thermolysis process of oil sludge (Atasu-Alashankou) with nickel, cobalt and iron deposited on microsilicate. EasternEuropean J. Enterp. Technol. 2 (6(116)),19–24. DOI: 10.15587/1729-4061.2022.255666.
- 11. Fetisova O.Y., Kuznetsov PN, Purevsuren B. & Avid B. (2021). Kinetic study of the stage of thermal decomposition of various coals of Mongolia. Solid Fuel Chem. 1, 3–10. DOI: 10.31857/S0023117721010035.
- 12. Shin, S., Im, S.I., Nho, N.S. & Lee, K.B. (2016). Kinetic analysis using thermogravimetric analysis for nonisothermal pyrolysis of vacuum residue. J. Therm. Anal. Calorim, 126, 933–994. DOI: 10.1007/s10973-016-5568-6.
- 13. Xu, Y., Zhang, Y., Wang, Y., Zhang, G. & Chen, L. (2013). Thermogravimetric study of the kinetics and characteristics of the pyrolysis of lignite. React. Kinet. Mech. Cat. 110, 225. DOI: 10.1007/s11144-013-0586-x.
- 14. Maryandyshev, P.A., Chernov, A.A., Popova, E.I. & Lyubov, V.K. (2016). Thermal decomposition and combustion of coals, fuel wood, and hydrolytic lignin, as studied by thermal analysis. Solid Fuel Chem. 50 (3),167–176. DOI: 10/3103/S0361521916030095.
- 15. Tyanakh, S., Baikenov, M.I., Gulmaliev, A.M., Ma, Feng-Yun, Musina, G., Khamitova, T.O. & Bolatbay, A.N. (2022) . Kinetics of Thermolysis of a Low-Temperature Tar in the Presence of a Catalyzer Agent with Deposited Metals. Bulletin of the University of Karaganda Chemistry. 108 (4), 89–98. DOI: 10.31489/2022Ch4/4-22-19.
- 16. Flynn, J. & Wall, L. (1966). J. Polym. Sci. B Polym. Phys. 4, 296. DOI: 10.1002/pol.1966.110040504.
- 17. Ozawa, T. (1965), Bull. Chem. Soc. Jpn. 38(11),1881–1886. DOI: 10.1246/bcsj.38.1881.
- 18. Hadzhiev, S.N. (2011). Nanoheterogenic catalysis – a new sector of nanotechnology in chemistry and petro-chemistry (review). Pet. Chem., 51(1), 3–16. DOI: 10.1134/S0965544116060050.
- 19. Brunauer, S., Deming, L.S., Deming, W.S. & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. J. Amer. Chem. Soc. 62(7), 1723–1732, DOI: 10.1021/ja01864a025.
- 20. Tyanakh, S., Tusipkhan, A., Gulmaliev, A.M., Ma F.Y., Baikenova, G.G., Kaikenov, D.A., Khalitova, A.I. & Baikenov, M.I. (2022). Kinetic study of thermal decomposition of primary coal tar in the presence of catalysts with nickel, cobalt and iron oxides supported on the microsilicate. Solid Fuel Chem. 1,19–27. DOI: 10.31857/S002311772201008X.
- 21. Doyle, C.D. (1961). Kinetic analysis of thermogravi-metric data. Appl. Polymer Sci. 15 (5), 285. DOI: 10.1002/app.1961.070051506.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9190b083-bb62-4d85-98d1-5bc6ee97c680