PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synchronization analysis of inertial memristive neural networks with time-varying delays

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the global exponential synchronization and quasi-synchronization of inertial memristive neural networks with time-varying delays. By using a variable transmission, the original second-order system can be transformed into first-order differential system. Then, two types of drive-response systems of inertial memristive neural networks are studied, one is the system with parameter mismatch, the other is the system with matched parameters. By constructing Lyapunov functional and designing feedback controllers, several sufficient conditions are derived respectively for the synchronization of these two types of drive-response systems. Finally, corresponding simulation results are given to show the effectiveness of the proposed method derived in this paper.
Słowa kluczowe
Rocznik
Strony
269--282
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • School of Mathematics, Southeast University, al. Southeast University, Nanjing, China
autor
  • School of Mathematics, Southeast University, al. Southeast University, Nanjing, China
Bibliografia
  • [1] L. O. Chua, Memristor-the missing circuit element, IEEE Transaction on Circuit Theory, Vol. 18, No.6, pp. 507-519, 1971.
  • [2] D. Strukov, G. Snide and D. Stewart, The missing memristor found, Nature, Vol. 453, No. 6, pp. 80-83, 2008.
  • [3] R. Rakkiyappan, S. Premalatha, A. Chandrasekar and J. Cao, Stability and synchronization of innertial memristive neural networks with time delays, Cognit. Neurodyn., Vol. 10, No. 5, pp. 437-451, 2016.
  • [4] N. Li and J. Cao, Lag synchronization of memristor-based coupled neural networks via ωmeasure, IEEE Trans. Neural Netw. Learn. Syst., Vol. 27, No. 3, pp. 169-182, 2016.
  • [5] X. Yang, J. Cao, and J. Liang, Exponential Synchronization of memeristive neural networks with delays: Interval matrix method, IEEE Trans. Neural Netw. Learn. Syst., 10.1109/TNNLS.2016.2561298.
  • [6] J. Hu, J. Cao and A. Elaiw, Pinning synchronization of coupled inertial delayed neural networks, Cognit. Neurodyn., Vol. 9, No. 3, pp. 341-350, 2015.
  • [7] Q. Liu, X. Liao and Y. Liu, Dynamics of an inertial two-neuron system with time delay, Nonlinear Dyn., Vol. 58, No. 3, pp. 573-609, 2009.
  • [8] Z. Zhang and Z. Quan, Global exponential stability via inequality technique for inertial BAM neural networks with time delays, Neurocomputing., Vol. 151, No. 3, pp. 1316-1326, 2015.
  • [9] Q. Liu, X. Liao and Y. Wu, Stability of bifurcating periodic solution for a single delayed inertial neuron model under periodic excitation, Nonlinear Analysis: Real World Applications, Vol. 10, No. 4, pp. 2384-2395, 2009.
  • [10] W. D. Wheeler and W. C. Schieve, Stability and Chaos in an inertial two-neuron system, Physica B, Vol. 105, No. 4, pp. 267-284, 1997.
  • [11] Y. Ke and C. Miao, Stability and existence of periodic solutions in inertial BAM neural networks with time delay, Neural Computing and Applications, Vol. 23, No. 3, pp. 1089-1099, 2013.
  • [12] W. Zhang, C. Li and T. Huang, Exponential stability of inertial BAM neural networks with timevarying delay via periodically intermittent control, Neural Computing and Applications, Vol. 26, No. 7, pp. 1781-1787, 2015.
  • [13] Y. Ke and C. Miao, Stability analysis of inertial Cohen-Grossberg-type neural networks with time delays, Neurocomputing., Vol. 117, No. 6, pp. 196-205, 2013.
  • [14] J. Qi, C. Li and T. Huang, Stability of delayed memristive neural networks with time-varying impulses, Cognit. Neurodyn., Vol. 8, No. 5, pp. 429-436, 2014.
  • [15] R. Rakkiyappan, G. Velmurugan and J. Cao, Stability analysis of memristor-based fractional-order neural networks with different memductance functions, Cognit. Neurodyn., Vol. 9, No. 2, pp. 145-177, 2015.
  • [16] L. Chen, R. Wu and J. Cao, Stability and synchronization of memristor-based fractional-order delayed neural networks, Neural Netw., Vol. 71, pp. 37-44, 2015.
  • [17] A. Wu and Z. Zeng, Global Mittag-Leffler stabilization of fractional-order memristive neural networks, IEEE Trans. Neural Netw. Learn. Syst., Vol. 3, pp. 1-12, 2015.
  • [18] W. Wang, L. Li and Y.Yang, Synchronization control of memristor-based recurrent neural networks with perturbations, Neural Netw., Vol. 53, pp. 8-14, 2014.
  • [19] X. Yang, J. Cao and W. Yu, Exponential synchronization of memristive Cohen-Grossberg neural networks with mixed delays, Cognit. Neurodyn., Vol. 8, pp. 239-249, 2014.
  • [20] Y. Wan, J. Cao and W. Yu, Robust fixed-time synchronization of delayed Cohen-Grossburg neural networks, Neural Netw., Vol. 73, pp. 86-94, 2016.
  • [21] J. Cao and J. Lu, “Adaptive synchronization of neural networks with or without time-varying delays, Chaos, Vol. 16, No. 1, pp. 8-14, 2006.
  • [22] J. Cao and Y. Wan, Matrix measure strategies for stability and synchronization of inertial neural network with time-delays, Neural Netw., Vol. 53, pp. 165-172, 2014.
  • [23] W. He and J. Cao, Exponential synchronization of chaotic neural networks:a matrix measure approach, Nonlinear Dyn., Vol. 55, pp. 55-65, 2009.
  • [24] H. Bao and J. Cao, Finite-time generalized synchronization of nonidentical delayed chaotic sysytems, Nonlinear Analysis: Modelling and Control, Vol. 21, No. 3, pp. 306-324, 2016.
  • [25] L. Wen, Y. Yu and W. Wang, Generalized Halanay inequalities for dissipativity of Voterra functional differential equations, Journal of Mathematical Analysis and Applications Vol. 347, No. 1, pp.169-178, 2008.
  • [26] M. Vidyasagar, Nonlinear System Analysis, Prentice Hall, Englewood Cliffs, 1993.
  • [27] A. F. Filippov and F. M. Arscott, Differential equations with discontinuous right hand sides: control systems, Dordrecht, Kluwer, Springer, 2013.
  • [28] L. Xu and X. Wang, Mathematical Analysis Method and Examples, Higher Education Press,Beijing, 1983.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91907abe-12df-4822-9ffb-f97004235e37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.