PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and cutting properties of WC-Co composites obtained by the SPS - Spark Plasma Sintering method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Functional properties of WCCo composites obtained by the SPS – Spark Plasma Sintering method. The rapid development of the furniture market results in the need to produce tools with increasingly better properties which make it possible to increase the efficiency of the production. One of the prospective paths of development for blades intended for cutting wood-based materials are carbides made using the Spark Plasma Sintering method. It makes it possible to produce sinters with submicron or even nanometric WC grain size in a very short time and without the need for using inhibitors. As a result of the specific heating conditions, this method makes it possible to obtain a material having high parameters in comparison with the material produced using conventional methods. This study aimed to determine the degree of wear of SPS tools compared to commercially available blades (of similar chemical composition). The results of research testing the basic properties (hardness, density, microstructure) of WCCo composites, obtained using the innovative SPS method, are included in the study. The quality of the produced tools and the intensity of wear of the blades made using the SPS method were evaluated. The results were compared to commercially available blades. The wear of individual blades was evaluated based on the machining of three-layer particleboard.
PL
Struktura i własności skrawne kompozytów narzędziowych WC-Co, otrzymywanych metodą SPS – Spark Plasma Sintering. Szybki rozwój przemysłu meblarskiego powoduje konieczność wytwarzania narzędzi o coraz lepszych właściwościach, które pozwalają na zwiększenie efektywności produkcji. Jedną z perspektywicznych ścieżek rozwoju ostrzy, przeznaczonych do obróbki materiałów drewnopochodnych są węgliki WCCo, wytwarzane metodą Spark Plasma Sintering. Metoda ta umożliwia wytwarzanie spieków o submikronowej i nanometrycznej wielkości ziarna WC w bardzo krótkim czasie oraz bez konieczności stosowania inhibitorów. Celem pracy było określenie stopnia zużycia narzędzi otrzymywanych techniką SPS w porównaniu z dostępnymi na rynku ostrzami (o podobnym składzie chemicznym). W pracy przedstawiono wyniki badań podstawowe właściwości (twardość, gęstość, mikrostrukturę) kompozytów WCCo, uzyskanych metodą SPS. Oceniono intensywność zużycia ostrzy wykonanych metodą SPS. Wyniki porównano z dostępnymi na rynku ostrzami.
Twórcy
  • Institute of Wood Sciences and Furniture, Warsaw University of Life Science – SGGW
autor
  • Institute of Wood Sciences and Furniture, Warsaw University of Life Science – SGGW
  • Institute of Wood Sciences and Furniture, Warsaw University of Life Science – SGGW
Bibliografia
  • 1. ABDOLZADEH H., DOOSTHOSEINI K., 2009: Evaluation of old corrugated container and wood fiber application on surface roughness of three-layer particleboard. BioResources, 4(3), 970-978.
  • 2. ASTAKHOV V.P., STANLEY A., 2015: Polycrystalline Diamond (PCD) Tool Material: Emerging Applications, Problems, and Possible Solutions. In Traditional Machining Processes (pp. 1-32). Springer, Berlin, Heidelberg.
  • 3. CARVALHO L., MAGALHÃES F., FERRA, J., 2012: Formaldehyde emissions from wood-based panels-Testing methods and industrial perspectives. Formaldehyde: chemistry, applications and role in polymerization, 1-45.
  • 4. CHA S.I., HONG S.H., 2003: Microstructures of binderless tungsten carbides sintered by spark plasma sintering process. Materials Science and Engineering: A, 356(1-2), 381-389.
  • 5. CHAPMAN K.M., 2006: Wood-based panels: particleboard, fibreboards and oriented strand board. In Primary wood processing (pp. 427-475). Springer, Dordrecht.
  • 6. CHLADIL J., SEDLÁK J., RYBÁŘOVÁ E.Š., KUČERA M., DADO M., 2019: Cutting conditions and tool wear when machining wood-based materials. BioResources, 14(2), 3495-3505.
  • 7. CHMIELEWSKI M., NOSEWICZ S., ROJEK J., PIETRZAK K., MACKIEWICZ S., ROMELCZYK B., 2015: A study of densification and microstructure evolution during hot pressing of NiAl/Al2O3 composite. Advanced Composite Materials, 24(1), 57-66.
  • 8. CZARNIAK P., SZYMANOWSKI K., KUCHARSKA B., KRAWCZYŃSKA A., SOBIECKI J.R., KUBACKI J., PANJAN P., 2020: Modification of tools for wood based materials machining with TiAlN/a-CN coating. Materials Science and Engineering: B, 257, 114540.
  • 9. GHALEHNO M.D., NAZERIAN M., BAYATKASHKOOLI A., 2011: Influence of utilization of bagasse in surface layer on bending strength of three-layer particleboard. European Journal of Wood and Wood Products, 69(4), 533-535.
  • 10. JIANG D., HULBERT D.M., KUNTZ J.D., ANSELMI-TAMBURINI U., MUKHERJEE A.K., 2007: Spark plasma sintering: A high strain rate low temperature forming tool for ceramics. Materials Science and Engineering: A, 463(1-2), 89-93.
  • 11. KLIMCZYK P., KOWALUK G., SZYMANSKI W., BEER P., ZBIEC M., 2008: Nowe materiały do produkcji narzędzi stosowanych do obróbki drewna i materiałów drewnopochodnych. Przemysł drzewny, 59(03), 45-47.
  • 12. LENGOWSKI E.C., JÚNIOR E.A.B., KUMODE M.M.N., CARNEIRO M.E., SATYANARAYANA K.G., 2019: Nanocellulose-reinforced adhesives for wood-based panels. In Sustainable Polymer Composites and Nanocomposites, Springer, Cham, 1001-1025.
  • 13. LI G., RAHIM M.Z., PAN W., WEN C., DING S., 2020: The manufacturing and the application of polycrystalline diamond tools–A comprehensive review. Journal of Manufacturing Processes, 56, 400-416.
  • 14. LIU K., WANG Z., YIN Z., CAO L., YUAN J., 2018: Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering. Ceramics International, 44(15), 18711-18718.
  • 15. MICHALSKI A., SIEMIASZKO D., 2007: Nanocrystalline cemented carbides sintered by the pulse plasma method. International Journal of Refractory Metals and Hard Materials, 25(2), 153-158.
  • 16. MICHALSKI A., ROSIŃSKI M., 2008: Sintering diamond/cemented carbides by the pulse plasma sintering method. Journal of the American Ceramic Society, 91(11), 35603565.
  • 17. NTALOS G.A., GRIGORIOU A.H., 2002: Characterization and utilisation of vine prunings as a wood substitute for particleboard production. Industrial Crops and Products, 16(1), 59-68.
  • 18. PHILBIN P., GORDON S., 2005: Characterisation of the wear behaviour of polycrystalline diamond (PCD) tools when machining wood-based composites. Journal of Materials Processing Technology, 162, 665-672.
  • 19. PORANKIEWICZ B., JÓŹWIAK K., WIECZOREK D., IDZIKOWSKI I., 2015: Specific wear on the rake face made of sintered carbide cutting edge during milling of laminated wood. European Journal of Wood and Wood Products, 73(1), 35-41.
  • 20. ŠEBELOVÁ E., CHLADIL J., 2013: Tool Wear and Machinability of Wood-based Material during Machining Process. Manufacturing Technology, 13(2), 231-236.
  • 21. SHALBAFAN A., LUEDTKE J., WELLING J., THOEMEN H., 2012: Comparison of foam core materials in innovative lightweight wood-based panels. European Journal of Wood and Wood Products, 70(1-3), 287-292.
  • 22. SHEIKH-AHMAD J.Y., BAILEY J.A., 1999: High-temperature wear of cemented tungsten carbide tools while machining particleboard and fiberboard. Journal of Wood Science, 45(6), 445-455.
  • 23. SHIN S.G., 2000: RETRACTED ARTICLE: Experimental and simulation studies on grain growth in TiC and WC-based cermets during liquid phase sintering. Metals and Materials International, 6(3), 195-201.
  • 24. SRIVASTAVA A.K., DIXIT A.R., TIWARI S., 2018: A review on the intensification of metal matrix composites and its nonconventional machining. Science and Engineering of Composite Materials, 25(2), 213-228. Engineering of Composite Materials, 25(2), 213-228.
  • 25. SZWAJKA K., TRZEPIECIŃSKI T., 2016: Effect of tool material on tool wear and delamination during machining of particleboard. Journal of Wood Science, 62(4), 305315.
  • 26. TARAMIAN A., DOOSTHOSEINI K., MIRSHOKRAII S.A., FAEZIPOUR M., 2007: Particleboard manufacturing: an innovative way to recycle paper sludge. Waste management, 27(12), 1739-1746.
  • 27. WACHOWICZ J., TRUSZKOWSKI T., ROSIŃSKI M., OSSOWSKI M., SKRABALAK G., CYRANKOWSKI M., 2018: Tribological Properties of WCCo/cBNComposites Produced by Pulse Plasma Sintering. Archives of Metallurgy and Materials, 63.
  • 28. WACHOWICZ J., WIERZBICKA K., CZARNIAK P., WILKOWSKI J., 2018: The influence of WC grain size on the durability of WCCo cutting edges in the machining of wood-based materials. Annals of Warsaw University of Life Sciences-SGGW, Forestry and Wood Technology, (107), 65-71.
  • 29. WEI W., LI Y., XUE T., TAO S., MEI C., ZHOU W., WANG T., 2018: The research progress of machining mechanisms in milling wood-based materials. BioResources, 13(1), 2139-2149.
  • 30. WILKOWSKI J., BARLAK M., WERNER Z., ZAGÓRSKI J., CZARNIAK P., PODZIEWSKI P., SZYMANOWSKI K., 2019: Lifetime improvement and the cutting forces in nitrogen-implanted drills during wood-based material machining. Wood and Fiber Science, 51(2), 1-12.
  • 31. YAMAN B., MANDAL H., 2009: Spark plasma sintering of Co–WC cubic boron nitride composites. Materials Letters, 63(12), 1041-1043.
  • 32. YU D., GAO Z., LI X., WANG D., 2010: Development and Application of Super Hard Tool Materials [J]. New Technology & New Process, 11.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-918c9b94-d153-4069-a4ba-7e9b55dd3dae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.