Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Radial basis functions (RBF) have become an area of research in recent years, especially in the use of solving partial differential equations (PDE). Radial basis functions have an impressive capability in interpolating scattered data, even for data with discontinuities. Although, for infinitely smooth radial basis functions such as the multi-quadrics and inverse multi-quadrics, the shape parameter must be chosen properly to obtain accurate approximations while avoiding ill-conditioning of the interpolating matrices. The optimum shape parameter can vary depending on the field, such as in locations of sharp gradients or shocks. Typically, the shape parameter is chosen to maintain a high conditioning number for the interpolation matrix, rendering the RBF smooth [1–10]. However, this strategy fails for a problem with a shock or sharp discontinuity. Instead, in such cases the conditioning number must be kept small. The focus of this work is then to demonstrate the use of RBF interpolation in the approximation of sharp gradients or shocks by use of a RBF blending interpolation approach. This RBF blending interpolation approach is used to maintain the optimum shape parameter depending on the field. The approach is able to sense gradients or shocks in the field and adjust the shape parameter accordingly to keep excellent accuracy. Presented in this work, is an explanation of the RBF blending interpolation methodology and testing of the RBF blending interpolation approach by solving the Burger’s equation using the virtual finite difference method.
Rocznik
Tom
Strony
229--241
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr.
Twórcy
autor
- Mechanical and Aerospace Engineering Department University of Central Florida 4000 Central Florida Blvd., Orlando, FL, 32816, USA
autor
- Mechanical and Aerospace Engineering Department University of Central Florida 4000 Central Florida Blvd., Orlando, FL, 32816, USA
autor
- Department of Mechanical Engineering Embry-Riddle Aeronautical University Daytona Beach, FL, USA
Bibliografia
- [1] A.H.-D. Cheng, M.A. Golberg, E.J. Kansa, G. Zammito. Exponential convergence and H-c multiquadric collocation method for partial differential equations. Numer. Methods Partial Differ. Equ., 19: 571–594, 2003.
- [2] B. Sarler, R. Vertnik. Local explicit radial basis function collocation method for diffusion problems. Comput. Math. Appl., 51(8): 1269–1282, 2005.
- [3] B. Sarler, T. Tran-Cong, C.S. Chen. Meshfree direct and indirect local radial basis function collocation formulations for transport phenomena. Boundary Elements XVII, A. Kassab, C.A. Brebbia, E. Divo [Eds.], WIT Press, Southampton, UK, pp. 417–428, 2005.
- [4] S. Gerace, K. Erhart, A. Kassab, E. Divo. A model-integrated localized collocation meshless method for large scale three dimensional heat transfer problems. Engineering Analysis, 45: 2–19, 2014.
- [5] J. Kelly, E. Divo, A.J. Kassab. Numerical Solution of the Two-Phase Incompressible Navier-Stokes Equations using a GPU-Accelerated Meshless Method Engineering Analysis with Boundary Elements. Engineering Analysis, 40C: 36–49, 2014.
- [6] S. Gerace, K. Erhart, E. Divo, A. Kassab. Adaptively refined hybrid FDM/meshless scheme with applications to laminar and turbulent flows. CMES: Computer Modeling in Engineering and Science, 81(1): 35–68, 2011.
- [7] K. Erhart, A.J. Kassab, E. Divo. An inverse localized meshless technique for the determination of non-linear heat generation rates in living tissues. International Journal of Heat and Fluid Flow, 18(3): 401–414, 2008.
- [8] E.A. Divo, A.J. Kassab. An efficient localized RBF meshless method for fluid flow and conjugate heat transfer. ASME Journal of Heat Transfer, 129: 124–136, 2007.
- [9] E.A. Divo, A.J. Kassab. Iterative domain decomposition meshless method modeling of incompressible flows and conjugate heat transfer. Engineering Analysis, 30(6): 465–478, 2006.
- [10] E. Divo, A.J. Kassab. Localized meshless modeling of natural convective viscous flows. Numerical Heat Transfer, Part B: Fundamentals, 53: 487–509, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-918ad69a-bc26-41c6-b21d-fbd4fd84f2e8