PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonsmooth optimization control based on a sandwich model with hysteresis for piezo-positioning systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A nonsmooth optimization control (NOC) based on a sandwich model with hysteresis is proposed to control a micropositioning system (MPS) with a piezoelectric actuator (PEA). In this control scheme, the hysteresis phenomenon inherent in the PEA is described by a Duhem submodel embedded between two linear dynamic submodels that describe the behavior of the drive amplifier and the flexible hinge with load, respectively, thus constituting a sandwich model with hysteresis. Based on this model, a nonsmooth predictor for sandwich systems with hysteresis is constructed. To avoid the complicated online search for the optimal value of the generalized gradient at a nonsmooth point, the method of the so-called weighted estimation of generalized gradient is proposed. In order to compensate for the model error caused by model uncertainty, a model error compensator (MEC) is integrated into the online optimization control strategy. Afterwards, the stability of the control system is analyzed based on Lyapunov’s theory. Finally, the proposed NOC-MEC method is verified on an MPS with a PEA, and the corresponding experimental results are presented.
Rocznik
Strony
449--461
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • College of Mathematics and Physics, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
autor
  • College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
autor
  • College of Information Science and Technology, Donghua University, 2999 North-Renmin Rd., Shanghai 201620, China
autor
  • R&D Center (PERDC), Ford Powertrain Engineering, 1 Quality Way, Windsor, ON, N9A 6X3, Canada
Bibliografia
  • [1] Chen, X. (2012). Smoothing methods for nonsmooth, nonconvex minimization, Mathematical Programming 134(1): 71-79.
  • [2] Clarke, D.W., Mohtadi, C. and Tuffs, P.S. (1987). Generalized predictive control. Part II: Extensions and interpretations, Automatica 23(2): 149-160.
  • [3] Clarke, F., Ledyaev, Y., Stern, R. and Wolenski, P. (1998). Nonsmooth Analysis and Control Theory, Springer, New York.
  • [4] Corradini, M., Orlando, G. and Parlangeli, G. (2005). Robust control of nonlinear uncertain systems with sandwiched backlash, Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 8112-8117.
  • [5] Dong, R., Tan, Q. and Tan, Y. (2008). A nonsmooth nonlinear programming based predictive control for mechanical servo systems with backlash-like hysteresis, Asian Journal of Control 20(4): 1519-1532.
  • [6] Dong, R., Tan, Y. and He, D. (2013). A non-smooth IMC method for mechanical systems with backlash, Journal of Control Theory Applications 11(4): 600-607.
  • [7] Dong, R., Tan, Y. and Tan, Q. (2020). Mirror angle tuning of electromagnetic micro-mirrors with oscillation compensation, IEEE Transactions on Systems, Man and Cybernetics: Systems 50(8): 2969-2977.
  • [8] Dong, R., Tan, Y. and Xie, Y. (2016). Identification of micropositioning stage with piezoelectric actuators, Mechanical Systems and Signal Processing 75: 618-630.
  • [9] Dong, R., Tan, Y., Xie, Y. and Janschek, K. (2017). Recursive identification of micropositioning stage based on sandwich model with hysteresis, IEEE Transactions on Control Systems Technology 25(1): 317-325.
  • [10] Harnischmacher, G. and Marquardt, W. (2007). Nonlinear model predictive control of multivariable processes using block-structured models, Control Engineering Practice 15(10): 1328-1256.
  • [11] Janaideh, M., Su, C. and Rakheja, S. (2008). Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators, Smart Materials and Structures 17(3): 035026.
  • [12] Li, Y., Liu, Y. and Tong, S. (2022). Observer-based neuro-adaptive optimized control for strict-feedback nonlinear systems with state constraints, IEEE Transactions on Neural Networks and Learning Systems 33(7): 3131-3145.
  • [13] Luo, N., Tan, Y. and Dong, R. (2015). Observability and controllability analysis for sandwich systems with backlash, International Journal of Applied Mathematics and Computer Science 25(4): 803-814, DOI: 10.1515/amcs-2015-0057.
  • [14] Manni, A., Parlangeli, G. and Corradini, M. (2008). Robust stabilization of nonlinear sandwich plants containing generalized hysteresis nonlinearities, Proceedings of the 17th World Congress of the International Federation of Automatic Control, Seoul, Korea, pp. 14409-14414.
  • [15] Oh, J. and Bernstein, D. (2005). Semilinear Duhem model for rate-independent and rate-dependent hysteresis, IEEE Transactions on Automatic Control 50(5): 631-645.
  • [16] Oliveri, A., Maselli, M., Lodi, M., Storace, M. and Cianchetti, M. (2019). Model based compensation of rate-dependent hysteresis in a piezoresistive strain sensor, IEEE Transactions on Industrial Electronics 66(10): 8205-8213.
  • [17] Tao, G., Ma, X. and Ling, Y. (2001). Optimal and nonlinear decoupling control of system with sandwiched backlash, Automatica 37(2): 165-176.
  • [18] Taware, A., Tao, G. and Teolis, C. (2002). Design and analysis of a hybrid control scheme for sandwich non-smooth nonlinear systems, IEEE Transactions on Automatic Control 47(1): 145-150.
  • [19] Tong, S., Sun, K. and Sui, S. (2018). Observer-based adaptive fuzzy decentralized optimal control design for strict feedback nonlinear large-scale systems, IEEE Transactions on Fuzzy Systems 26(2): 569-584.
  • [20] Xie, Y., Tan, Y. and Dong, R. (2013). Nonlinear modeling and decoupling control of XY micropositioning stages with piezoelectric actuators, IEEE/ASME Transactions on Mechatronics 18(3): 821-832.
  • [21] Xue, Y., Meng, D., Yin, S., Han, W., Yan, X., Shu, Z. and Diao, L. (2019). Vector-based model predictive hysteresis current control for asynchronous motor, IEEE Transactions on Industrial Electronics 66(11): 8703-8712.
  • [22] Yu, D., Long, J., Chen, C.L.P. and Wang, Z. (2022). Adaptive swarm control within saturated input based on nonlinear coupling degree, IEEE Transactions on Systems, Man, and Cybernetics: Systems 52(8): 4900-4911.
  • [23] Zhang, Z., Yang, Z., Liu, S., Chen, S. and Zhang, X. (2022). A multi-model based adaptive reconfiguration control scheme for an electro-hydraulic position servo system, International Journal of Applied Mathematics and Computer Science 32(2): 185-196, DOI: 10.34768/amcs-2022-0014.
  • [24] Zhao, X. and Tan, Y. (2006). Neural adaptive control of dynamic sandwich systems with hysteresis, Proceedings of 2006 IEEE International Symposium on Intelligent Control, Munich, Germany, pp. 82-87.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9188b8bf-1002-425c-96ef-c429db7dca11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.