PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Fatigue on Muscle Temperature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to investigate the possibility of using infrared (IR) thermography for assessing muscle fatigue during low effort. Three tests at constant levels of load 5, 15 and 30% of maximum voluntary contraction (MVC) lasting 5 min each were performed on a group of 10 men. Temperature and electromyographic (EMG) signal were registered from biceps brachii (BB). Analysis focused on the influence of load on the values and changes in time of muscle temperature. Correlations between temperature and EMG parameters (RMS, MPF and MF) were also analysed. Constant load sustained during the tests resulted in an increase in the temperature of BB. There were statistically significant correlations between temperature and EMG parameters for most subjects. Results of the study suggest that IR thermography can be an alternative or supplementary method for assessing muscle fatigue at low levels of contraction.
Słowa kluczowe
Rocznik
Strony
233--243
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Central Institute for Labour Protection – National Research Institute (CIOP-PIB), Poland
autor
  • Central Institute for Labour Protection – National Research Institute (CIOP-PIB), Poland
  • Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • 1.Visser B, van Dieën JH. Pathophysiology of upper extremity muscle disorders. J Electromyogr Kinesiol. 2006;16(1):1–16.
  • 2.Gerr F, Marcus M, Ensor C, Kleinbaum D, Cohen S, Edwards A, et al. A prospective study of computer users: I. Study design and incidence of musculoskeletal symptoms and disorders. Am J Ind Med. 2002;41(4):221–35.
  • 3.Oliveira Ade S, Gonçalves M. EMG amplitude and frequency parameters of muscular activity: effect of resistance training based on electromyographic fatigue threshold. J Electromyogr Kinesiol. 2009;19(2):295–303.
  • 4.Roman-Liu D, Konarska M. Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC. J Electromyogr Kinesiol. 2009;19(5):864–74.
  • 5.Roman-Liu D, Tokarski T, Wójcik K. Quantitative assessment of upper limb muscle fatigue depending on the conditions of repetitive task load. J Electromyogr Kinesiol. 2004;14(6):671–82.
  • 6.Bartuzi P, Roman-Liu D, Tokarski T. A study of the influence of muscle type and muscle force level on individual frequency bands of the EMG power spectrum. International Journal of Occupational Safety and Ergonomics (JOSE). 2007;13(3):241–54. Retrieved March 26, 2012, from: http://www.ciop.pl/23205.
  • 7.Paasuke M, Rannama L, Ereline J, Gapeyeva H, Oopik V. Changes in soleus motoneuron pool reflex excitability and surface EMG parameters during fatiguing low- vs. high-intensity isometric contractions. Electromyogr Clin Neurophysiol. 2007;47(7–8):341–50.
  • 8.Barandun M, von Tscharner V, Meuli-Simmen C, Bowen V, Valderrabano V. Frequency and conduction velocity analysis of the abductor pollicis brevis muscle during early fatigue. J Electromyogr Kinesiol. 2009;19(1):65–74.
  • 9.Coorevits P, Danneels L, Cambier D, Ramon H, Druyts H, Stefan Karlsson J, et al. Correlations between shorttime Fourier- and continuous wavelet transforms in the analysis of localized back and hip muscle fatigue during isometric contractions. J Electromyogr Kinesiol. 2008;18(4):637–44.
  • 10.Coorevits P, Danneels L, Cambier D, Ramon H, Druyts H, Karlsson JS, De Moor GD, Vanderstraeten G. Test–retest reliability of wavelet—and Fourier based EMG (instantaneous) median frequencies in the evaluation of back and hip muscle fatigue during isometric back extensions. J Electromyogr Kinesiol. 2008;18(5):798–806.
  • 11.Gates DH, Dingwell JB. The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements. Exp Brain Res. 2008;187(4):573–585. Retrieved March 26, 2012, from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825378/?tool=pubmed.
  • 12.Yamada E, Kusaka T, Arima N, Isobe K, Yamamoto T, Itoh S. Relationship between muscle oxygenation and electromyography activity during sustained isometric contraction. Clin Physiol Funct Imaging. 2008;28(4):216–21.
  • 13.Merletti R, Botter A, Troiano A, Merlo E, Minetto MA. Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art. Clin Biomech (Bristol, Avon). 2009;24(2):122–34.
  • 14.Merletti R, Holobar A, Farina D. Analysis of motor units with high-density surface electromyography. J Electromyogr Kinesiol. 2008;18(6):879–90.
  • 15.Piscione J, Gamet D. Effect of mechanical compression due to load carrying on shoulder muscle fatigue during sustained isometric arm abduction: an electromyographic study. Eur J Appl Physiol. 2006;97(5):573–81.
  • 16.Hagg GM, Luttmann A, Jager M. Methodologies for evaluating electromyographic field data in ergonomics. J Electromyogr Kinesiol. 2000;10(5):301–12.
  • 17.Cook T, Rosencrance J, Zimmermann C, Gerleman D, Ludewig P. Electromyographic analysis of a repetitive hand gripping task. International Journal of Occupational Safety and Ergonomics (JOSE). 1998;4(2):185–200.
  • 18.Troiano A, Naddeo F, Sosso E, Camarota G, Merletti R, Mesin L. Assessment of force and fatigue in isometric contractions of the upper trapezius muscle by surface EMG signal and perceived exertion scale. Gait Posture. 2008;28(2):179–86.
  • 19.Ioi H, Kawakatsu M, Nakata S, Nakasima A, Counts AL. Mechanomyogram and electromyogram analyses during isometric contraction in human masseter muscle. Aust Orthod J. 2008;24(2):116–120.
  • 20.Mito K, Kitahara S, Tamura T, Kaneko K, Sakamoto K, Shimizu Y. Effect of skin temperature on RMS amplitude of electromyogram and mechanomyogram during voluntary isometric contraction. Electromyogr Clin Neurophysiol. 2007;47(3):153–60.
  • 21. DeLuca CJ. The use of electromyography in biomechanics. J Appl Biomech. 1997;13(2):135–63.
  • 22.Kallenberg LAC, Hermens HJ. Behaviour of a surface EMG based measure for motor control: motor unit action potential rate in relation to force and muscle fatigue. J Electromyogr Kinesiol. 2008;18(5):780–8.
  • 23.Rohmert W. Problems of determination of rest allowances. Part 2: determining rest allowances in different human tasks. Appl Ergon. 1973;4(3):158–62.
  • 24.Ostensvik T, Veiersted KB, Nilsen P. Association between numbers of long periods with sustained low-level trapezius muscle activity and neck pain. Ergonomics. 2009;52(12):1556–67.
  • 25.Karlsson J, Ollander B. Muscle metabolites with exhaustive static exercise of different duration. Acta Physiol Scand. 1972;86(3):309–14.
  • 26.Bosch T, de Looze MP, Kingma I, Visser B, van Dieen JH. Electromyographical manifestations of muscle fatigue during different levels of simulated light manual assembly work. J Electromyogr Kinesiol. 2009;19(4):e246–56.
  • 27.Elvin A, Siosteen AK, Nilsson A, Kosek E. Decreased muscle blood flow in fibromyalgia patients during standardized muscle exercise: a contrast media enhanced colour Doppler study. Eur J Pain. 2006;10(2):137–44.
  • 28.Felici F, Quaresima V, Fattorini L, Sbriccoli P, Filligoi GC, Ferrari M. Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises. J Electromyogr Kinesiol. 2009;19(2):e1–11.
  • 29.Momen A, Leuenberger UA, Ray CA, Cha S, Handly B, Sinoway LI. Renal vascular responses to static handgrip: role of muscle mechanoreflex. Am J Physiol Heart Circ Physiol. 2003;285(3):H1247–53.
  • 30.Becher C, Springer J, Feil S, Cerulli G, Paessler HH. Intra-articular temperatures of the knee in sports—an in-vivo study of jogging and alpine skiing. BMC Musculoskelet Disord. 2008;46(9):1–7.
  • 31.Drinkwater EJ, Behm DG. Effects of 22 degrees C muscle temperature on voluntary and evoked muscle properties during and after high-intensity exercise. Appl Physiol Nutr Metab. 2007;32(6):1043–51.
  • 32.De Ruiter CJ, De Haan A. Temperature effect on the force/velocity relationship of the fresh and fatigued human adductor pollicis muscle. Pflugers Arch. 2000;440(1):163–70.
  • 33.Petrofsky J, Laymon M. Muscle temperature and EMG amplitude and frequency during isometric exercise. Aviat Space Environ Med. 2005;76(11):1024–30.
  • 34.Farina D, Arendt-Nielsen L, Graven-Nielsen T. Effect of temperature on spike-triggered average torque and electrophysiological properties of lowthreshold motor units. J Appl Physiol. 2005;99(1):197–203. Retrieved March 26, 2012, from: http://jap.physiology.org/content/99/1/197.long.
  • 35.Bertmaring I, Babski-Reeves K, Nussbaum MA. Infrared imaging of the anterior deltoid during overhead static exertions. Ergonomics. 2008;51(10):1606–19.
  • 36.El ahrache K, Imbeau D, Farbos B. Percentile values for determining maximum endurance times for static muscular work. Int J Ind Ergon. 2006;36(2):99–108.
  • 37.Ma L, Chablat D, Bennis F, Zhang W. Dynamic muscle fatigue evaluation in virtual working environment. Int J Ind Ergon. 2009;39(1):211–20.
  • 38.Garg A, Hegmann KT, Schwoerer BJ, Kapellusch JM. The effect of maximum voluntary contraction on endurance times for the shoulder girdle. Int J Ind Ergon. 2002;30(2):103–13.
  • 39.Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–74.
  • 40.Hermens HJ, Freriks B, Merletti R, Hagg G, Stegeman D, Blok J, et al., editors. SENIAM 8: European recommendations for surface electromyography. Enschede, The Netherlands: Roessingh Research and Development; 1999.
  • 41.Perotto AO. Anatomic guide for the electromyographer. The limbs and trunk. 4th ed. Springfield, IL, USA: Charles C. Thomas; 2005.
  • 42.Farina D, Gazzoni M, Merletti R. Assessment of low back muscle fatigue by surface EMG signal analysis: methodological aspects. J Electromyogr Kinesiol. 2003;13(4):319–32.
  • 43.Kuiken TA, Lowery MM, Stoykov NS. The effect of subcutaneous fat on myoelectric signal amplitude and cross-talk. Prosthet Orthot Int. 2003;27(1):48–54.
  • 44.Farina D, Rainoldi A. Compensation of the effect of sub-cutaneous tissue layers on surface EMG: a simulation study. Med Eng Phys. 1999;21(6–7):487–97.
  • 45.Bartuzi P, Tokarski T, Roman-Liu D. The effect of the fatty tissue on EMG signal in young women. Acta Bioeng Biomech. 2010;12(2):87–92.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-917c5abb-7056-4217-8c0a-7144ec6c9bb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.