PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A quadrature-free Legendre polynomial approach for the fast modelling guided circumferential wave in anisotropic fractional order viscoelastic hollow cylinders

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Compared to the traditional integer order viscoelastic model, a fractional order derivative viscoelastic model is shown to be advantageous. The characteristics of guided circumferential waves in an anisotropic fractional order Kelvin–Voigt viscoelastic hollow cylinder are investigated by a quadrature-free Legendre polynomial approach combining the Weyl definition of fractional order derivatives. The presented approach can obtain dispersion solutions in a stable manner from an eigenvalue/eigenvector problem for the calculation of wavenumbers and displacement profiles of viscoelastic guided wave, which avoids a lot of numerical integration calculation in a traditional polynomial method and greatly improves the computational efficiency. Comparisons with the related studies are conducted to validate the correctness of the presented approach. The full three dimensional spectrum of an anisotropic fractional Kelvin–Voigt hollow cylinder is plotted. The influence of fractional order and material parameters on the phase velocity dispersion and attenuation curves of guided circumferential wave is discussed in detail. Moreover, the difference of the phase velocity dispersion and attenuation characteristics between the Kelvin–Voigt and hysteretic viscoelastic models is also illustrated. The presented approach along with the observed wave features should be particularly useful in non-destructive evaluations using waves in viscoelastic waveguides.
Rocznik
Strony
121--152
Opis fizyczny
Bibliogr. 34 poz., rys. kolor.
Twórcy
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, 454003, Jiaozuo, P.R. China
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, 454003, Jiaozuo, P.R. China
autor
  • School of Mathematics and Information Science, Henan Polytechnic University, 454003, Jiaozuo, P.R. China
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, 454003, Jiaozuo, P.R. China
Bibliografia
  • 1. I. Bartoli, A. Marzani, H. Matt, F.L.D. Scalea, E. Viola, Modeling wave propagation in damped waveguides of arbitrary cross-section, Journal of Sound and Vibration, 295, 685–707, 2006.
  • 2. T. Hayashi, W.J. Song, J.L. Rose, Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example, Ultrasonics, 41, 3, 175–183, 2003.
  • 3. A. Karmazin, E. Kirillova, W. Seemann, P. Syromyatnikov, Investigation of Lamb elastic waves in anisotropic multilayered composites applying the Green’s matrix, Ultrasonics, 51, 1, 17–28, 2011.
  • 4. S.I. Rokhlin, L. Wang, Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method, Journal of the Acoustical Society of America, 112, 822–834, 2002.
  • 5. X. Zhang, Z. Li, X. Wang, J. Yu, The fractional Kelvin–Voigt model for circumferential guided waves in a viscoelastic FGM hollow cylinder, Applied Mathematical Modelling, 89, 299–313, 2021.
  • 6. S.V. Kuznetsov, Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence, Wave Random Complex, 1683257, 1–10, 2019.
  • 7. F. Simonetti, M.J.S. Lowe, On the meaning of Lamb mode nonpropagating branches, Journal of the Acoustical Society of America, 118, 1, 186–192, 2005.
  • 8. F. Zhu, B. Wang, Z. Qian, E. Pan, Accurate characterization of 3D dispersion curves and mode shapes of waves propagating in generally anisotropic viscoelastic/elastic plates, International Journal of Solids and Structures, 150, 52–65, 2018.
  • 9. B. Pavlakovic, M. Lowe, Disperse User’s Manual Version 2.0, Imperial College, University of London, London, 2001.
  • 10. M. Zheng, C. He, Y. Lyu, B. Wu, Guided waves propagation in anisotropic hollow cylinders by Legendre polynomial solution based on state-vector formalism, Composite Structures, 207, 645–657, 2019.
  • 11. M. Castaings, B. Hosten, Guided waves propagating in sandwich structures made of anisotropic, viscoelastic, composite materials, Journal of the Acoustical Society of America, 113, 2622–2634, 2003.
  • 12. B. Hosten, M. Castaings, Transfer matrix of multilayered absorbing and anisotropic media. Measurements and simulations of ultrasonic wave propagation through composite materials, Journal of the Acoustical Society of America, 94, 1488–1495, 1993.
  • 13. M.A. Torres-Arredondo, C.P. Fritzen, A viscoelastic plate theory for the fast modelling of Lamb wave solutions in NDT/SHM applications, Ultrasound, 66, 7–13, 2011.
  • 14. C. Othmani, S. Dahmen, A. Njeh, M.H.B. Ghozlen, Investigation of guided waves propagation in orthotropic viscoelastic carbon–epoxy plate by Legendre polynomial method, Mechanics Research Communications, 74, 27–33, 2016.
  • 15. J.G. Yu, Viscoelastic shear horizontal wave in graded and layered plates, International Journal of Solids and Structures, 48, 2361–2372, 2011.
  • 16. S. Dahmen, M.B. Amor, M.H.B. Ghozlen, Investigation of the coupled Lamb waves propagation in viscoelastic and anisotropic multilayer composites by Legendre polynomial method, Composite Structures, 153, 557–568,
  • 17. H. Cunfu, L. Hongye, L. Zenghua, W. Bin, The propagation of coupled Lamb waves in multilayered arbitrary anisotropic composite laminates, Journal of Sound and Vibration, 332, 7243–7256, 2013.
  • 18. E. Manconi, B.R. Mace, R. Garziera, The loss-factor of pre-stressed laminated curved panels and cylinders using a wave and finite element method, Journal of Sound and Vibration, 332, 1704–1711, 2013.
  • 19. F.H. Quintanilla, M.J.S. Lowe, R.V. Craster, Full 3D dispersion curve solutions for guided waves in generally anisotropic media, Journal of Sound and Vibration, 363, 545–559, 2016.
  • 20. F.H. Quintanilla, Z. Fan, M.J.S. Lowe, R.V. Craster, Guided waves’ dispersion curves in anisotropic viscoelastic single-and multi-layered media, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471, 20150268, 2015.
  • 21. M.S. Chaki, A.K. Singh, Anti-plane wave in a piezoelectric viscoelastic composite medium: a semi-analytical finite element approach using PML, International Journal of Applied Mechanics, 12, 2050020, 2020.
  • 22. M. Mazzotti, A. Marzani, I. Bartoli, E Viola, Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method, International Journal of Solids and Structures, 49, 2359–2372, 2012.
  • 23. D. Ren, X. Shen, C. Li, X. Cao, The fractional Kelvin–Voigt model for Rayleigh surface waves in viscoelastic FGM infinite half space, Mechanics Research Communications, 87, 53–58, 2017.
  • 24. R.C. Koeller, Applications of fractional calculus to the theory of viscoelasticity, Journal of Applied Mechanics, 51, 299–307, 1984.
  • 25. M.D. Paola, A. Pirrotta, A. Valenza, Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mechanics of Materials, 43, 799–806, 2011.
  • 26. L.B. Eldred, W.P. Baker, A.N. Palazotto, Kelvin–Voigt versus fractional derivative model as constitutive relations for viscoelastic materials, AIAA Journal, 33, 3, 547–550, 1995.
  • 27. B. Wu, Y. Su, D. Liu, W Chen., C Zhang, On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders, Journal of Sound and Vibration, 421, 17–47, 2018.
  • 28. A. Safari-Kahnaki, S.M. Hosseini, M. Tahani, Thermal shock analysis and thermoelastic stress waves in functionally graded thick hollow cylinders using analytical method, International Journal of Mechanics and Materials in Design, 7, 3, 167-184, 2011.
  • 29. C. Baron, Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum, Ultrasonics, 51, 2, 123–130, 2011.
  • 30. G. Neau, Lamb Waves in Anisotropic Viscoelastic Plates. Study of the Wave Fronts and Attenuation, PhD Thesis, University Bordeaux I, Bordeaux, 2003.
  • 31. H.X. Sun, B.Q. Xu, H. Zhang, Q. Gao, S.Y. Zhang, Influence of adhesive layer properties on laser-generated ultrasonic waves in thin bonded plates, Chinese Physics B, 20, 014302, 2011.152 X. Zhang et al.
  • 32. M Derakhshan, A. Aminataei, An iterative method for solving fractional diffusionwave equation involving the Caputo–Weyl fractional derivative, Numerical Linear Algebra, e2345, 2020.
  • 33. G. Failla, M. Zingales, Advanced materials modelling via fractional calculus: challenges and perspectives, Philosophical Transactions of the Royal Society A, 378, 20200050, 2020.
  • 34. T.J. Bridges, P.J. Morris, Differential eigenvalue problems in which the parameter appears nonlinearly, Journal of Computational Physics, 55, 437–460, 1984.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91781d69-0f61-4130-ba5c-1aa73c6d5527
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.