
ARCHIVES OF MECHANICS
Arch. Mech. 73 (2), 121–152, 2021, DOI: 10.24423/aom.3642
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Compared to the traditional integer order viscoelastic model, a frac-
tional order derivative viscoelastic model is shown to be advantageous. The charac-
teristics of guided circumferential waves in an anisotropic fractional order Kelvin–
Voigt viscoelastic hollow cylinder are investigated by a quadrature-free Legendre
polynomial approach combining the Weyl definition of fractional order derivatives.
The presented approach can obtain dispersion solutions in a stable manner from an
eigenvalue/eigenvector problem for the calculation of wavenumbers and displacement
profiles of viscoelastic guided wave, which avoids a lot of numerical integration cal-
culation in a traditional polynomial method and greatly improves the computational
efficiency. Comparisons with the related studies are conducted to validate the correct-
ness of the presented approach. The full three dimensional spectrum of an anisotropic
fractional Kelvin–Voigt hollow cylinder is plotted. The influence of fractional order
and material parameters on the phase velocity dispersion and attenuation curves of
guided circumferential wave is discussed in detail. Moreover, the difference of the
phase velocity dispersion and attenuation characteristics between the Kelvin–Voigt
and hysteretic viscoelastic models is also illustrated. The presented approach along
with the observed wave features should be particularly useful in non-destructive eval-
uations using waves in viscoelastic waveguides.
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1. Introduction

In recent years, ultrasonic guided wave has been widely used in the
non-destructive evaluation (NDE) of various structures, because it can provide
a larger inspection range and the complete coverage of the waveguide cross-
section compared with ultrasonic bulk waves [1, 2]. As an important step in the
application of guided wave inspection techniques, accurate and highly efficient
calculation of dispersive characteristics of guided waves and the associated dis-
placement and stress profiles is extremely essential. Many appropriate theoretical
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models are desired to study the characteristics of wave propagation in different
waveguides such as the plate-like or pipe structures composed of isotropic or
anisotropic, elastic or viscoelastic materials [3–5]. Viscoelastic materials, such as
carbon fiber and epoxy resin, are widely used in integrated circuits, semiconduc-
tor devices, solar cells, and microelectromechanical systems, etc. [6]. The roots
of attenuated modes caused by the viscoelasticity are important for NDE, but
they are relatively difficult to obtain, especially for some complex cases involving
anisotropy or curved waveguide structures. Hence reliable and effective methods
to find all roots of the dispersion relation are very valuable.

The classical root-searching algorithm forms the basis of the DISPERSE soft-
ware and it can solve various wave propagation problems [7, 8]. But it has some
limitations, for instance, the material must be isotropic when dealing with cylin-
drical structures, and excluding the case involving generally anisotropic [9, 10].
Actually the introduction of curvature, viscoelasticity and anisotropic, can lead
to expensive and tedious calculations. When considering the material viscoelas-
ticity, the wavenumber is complex, and the search must be performed in C for
a given real frequency, a two dimensional space. This is a new challenge and
algorithms to compute dispersion relations for waveguides are still under de-
velopment. Hosten and Castaings [11, 12] investigated the wave propaga-
tion in multilayered anisotropic media using the transfer matrix method, and
pointed out the instabilities of the transfer matrix method for large frequency-
thickness products. Torres-Arredondo and Fritzen [13] developed a higher
order plate theory method to investigate the attenuation and phase velocity
in an orthotropic viscoelastic plate, but this method failed to obtain precise
results for higher order modes at high frequency. Using the Legendre polyno-
mial approach, Othmani et al. [14], Yu [15], Souhail Dahmen et al. [16] and
He et al. [17] investigated viscoelastic guided waves in layered and functionally
graded waveguides. The polynomial approach suffers from the limitation of the
time-consuming integral calculations and the difficulty in obtaining complete so-
lutions of the transcendental dispersion equation. Zhu et al. [8] proposed a new
root-searching algorithm to calculate the dispersion curves for anisotropic vis-
coelastic/elastic plates, and studied the attenuation jump and branches exchange
in a viscoelastic model caused by conversion of wave mode shapes. Other com-
mon methods include the finite element method [18], the spectral collocation
method [19, 20], the semi-analytical finite element method [21, 22]. Approaches
to obtain dispersion relations usually reveal certain advantages and disadvan-
tages in addressing some of these problems, so algorithms to compute dispersion
relations for waveguides are still under development. The Legendre polynomial
approach is very versatile in wave propagation problems, which can incorporate
automatically boundary conditions into constitutive equations by a rectangular
window function. Noted that in previous research work using the Legendre poly-
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nomial approach, e.g. see [14–17], the dispersion relation is transformed into the
solution of the vanishing determinant, namely F (ω, k) = 0. Some root search-
ing methods such as the Newton downhill method are used to solve it. These
methods are iterative and very time consuming.

The Kelvin–Voigt model can be represented by a purely viscous damper and
a purely elastic spring connected in parallel [23]. Stress σ, strain ε and their rates
of change with respect to time t are governed by the equation

σ(t) = Eεt+ η[dε(t)/dt],

where E is a modulus of elasticity and η is viscosity. Studies have shown that tra-
ditional integer order viscoelastic models are limited in the accurate simulation
of viscoelastic behavior, especially for the relationship between attenuation and
viscosity. Compared to the integer order Kelvin–Voigt model, a fractional order
viscoelastic model is shown to be advantageous since it requires fewer parameters
to fit experimental data [24, 25]. Consequently, the time fractional Kelvin–Voigt
model is proposed by the equation,

σ(t) = Eε(t) + η[dαε(t)/dtα],

where α is the fractional order of the time differential [23,26]. When α = 1, it
becomes the traditional integer order Kelvin–Voigt model. The fractional order
viscoelastic modeling begins with the idea from fractional calculus that the or-
der of the derivative of the strain can be intermediate between 0 and 1 since it
is the derivative of the strain that characterizes the material’s behavior. More-
over, the hollow cylinder, a common structure element, is widely used in many
engineering applications. Investigations regarding the wave propagation charac-
teristics in such a structure have been prosperous in recent decades, for instance,
see [27–30]. However, the guided wave in an anisotropic fractional viscoelastic
hollow cylinder, to the best of the authors’ knowledge, has not been studied
before.

This study presents the quadrature-free Legendre polynomial approach com-
bining the Weyl definition of fractional order derivatives for modeling dispersive
solutions of guided circumferential waves in an anisotropic fractional Kelvin–
Voigt viscoelastic hollow cylinder. The presented approach has an important
advantage in computational efficiency compared to the existing polynomial ap-
proach, which can obtain dispersion solutions in a stable manner from an eigen-
value problem. It is easy to implement and non-iterative, and anisotropy is
straightforwardly handled and all modes are easily obtained. The computational
efficiency is assessed by the criterion of solving eigenvalues at given frequen-
cies. The validity of the presented approach is verified by two examples. The
full three dimensional (3D) spectrum of an anisotropic fractional Kelvin–Voigt
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viscoelastic hollow cylinder is plotted. The influence of fractional order and ma-
terial parameters (elastic modulus and viscoelastic modulus) on guided wave
phase velocity dispersion curves and attenuation curves are discussed in detail.
Moreover, dispersion solutions of both the integer order Kelvin–Voigt and hys-
teretic viscoelastic models are also illustrated to compare their differences. The
traction-free boundary is assumed in this paper.

2. The description of the problem and the basic equations

2.1. The problem definition

Let us consider an anisotropic viscoelastic hollow cylinder with an infinite
length in axial direction. A cylindrical coordinate system (r, θ, z) is applied to
describe the cylinder geometry with an inner radius a and an outer radius b, as
shown in Fig. 1. Coordinates r, θ and z are in the thickness, circumferential and
axial directions. The thickness of the hollow cylinder is h (h = b − a), and the
radius-thickness ratio η = b/h.

Fig. 1. Geometry of the problem.

The wave propagates along the circumferential direction with the wavenum-
ber k and the angular frequency ω. The harmonic displacement, stress and strain
field components are expressed by

(2.1) u = [ur uθ uz]
T, σ = [σr σθ σz σrθ σrz σθz]

T, ε = [εr εθ εz εrθ εrz εθz]
T.

Neglecting the body force, the equilibrium differential equations written in
the cylindrical coordinate are,

(2.2)


∂rσrr +

1

r
∂θσrθ + ∂zσrz +

σrr − σθθ
r

= ρür,

∂rσrθ +
1

r
∂θσθθ + ∂zσθz +

2

r
σrθ = ρüθ,

∂rσrz +
1

r
∂θσθz + ∂zσzz +

1

r
σrz = ρüz,
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where ∂r = ∂/∂r, ∂θ = ∂/∂θ, ∂z = ∂/∂z, üi (i = r, θ, z) denote second-order
derivatives with respect to time, and ρ is the material density.

The strain-displacement relations are given by:

(2.3)

εrr = ∂rur, εθθ =
1

r
∂θuθ +

ur
r
, εzz = ∂zuz,

εrθ =
1

2

(
∂θur + ∂ruθ −

uθ
r

)
,

εrz =
1

2
(∂zur + ∂ruz), εθz =

1

2

(
∂zuθ +

1

r
∂θuz

)
.

For a generally anisotropic elastic material the constitutive relation can be
expressed as

(2.4) σ = C̄ijklεklπ(r), i, j, k, l ∈ {r, θ, z}

where π(r) is a rectangular window function,

π(r) =

{
1, a ≤ r ≤ b,
0, elsewhere,

which is introduced to meet the stress-free boundary conditions, namely σrr =
σrθ = σrz at r = a and r = b. C̄ijkl is the material stiffness matrix and has
21 independent elements. For other materials, it has less independent compo-
nents, e.g. the orthotropic material system with 9 independent elements. C̄ijkl in
Eq. (2.4) can be defined to be complex quantities if the material is viscoelastic,
namely ¯̃Cijkl = C̃ijkl + iµijkl, the real part represents the elastic moduli and the
imaginary part its viscoelastic moduli [31]. Both the Kelvin–Voigt and hysteretic
models are well established in ultrasonic nondestructive testing.

In the Kelvin–Voigt model [31], the complex component of the stiffness matrix
Cijkl is dependent on frequency, thus:

(2.5) ¯̃Cijkl = Cijkl + i
ω
˜̄ω
µijkl = Cijkl + i

f

f̄
µijkl.

The complex components of the stiffness matrix according to the hysteretic
model [31] are independent of frequency, thus:

(2.6) ¯̃Cijkl = Cijkl + iµijkl,

where f is the frequency, f̄ is the characterization frequency and i is the imag-
inary unit. Obviously representation (2.6) for the hysteretic model could be re-
garded as a special case of (2.5) for the Kelvin–Voigt model when the frequency
is equal to the characterization frequency.
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For the fractional order Kelvin–Voigt viscoelastic model, the constitutive
equation can be written as [23]:

(2.7) σij = Cijklεkl + µijkl
∂αεkl
∂tα

,

where α is the order of the time derivative, 0 < α ≤ 1. We use the Weyl definition
of fractional order derivatives in this paper.

The αth order Wey1 derivative of a function f(t) is defined by [32, 33]

(2.8) tW
−α
∞ f(t) =

1

Γ
(α)

∞∫
t

(τ − t)α−1f(τ) dτ

and for a harmonic function of f(t) = eiωt, the Weyl fractional derivative has
the property that ∂α/∂tα[eiωt] = (iω)αeiωt.

Substituting Eqs. (2.3) and (2.5), (2.6) into (2.4)/(2.7) with following sub-
stitution into Eq. (2.2). As a result, three partial differential equations in terms
of displacements are obtained. Eqs. (2.9), (2.10) and (2.11) are the resulting
equations for an anisotropic fractional Kelvin–Voigt viscoelastic model, given
in the Appendix. For the orthotropic case, Eqs. (2.9)–(2.11) are simplified to
Eqs. (2.12)–(2.14). Obviously, Eq. (2.14) is decoupled and represents the cir-
cumferential SH wave Equations (2.12) and (2.13) are coupled and represent the
circumferential Lamb-like wave.

2.2. Legendre orthogonal polynomial approach

For free harmonic waves propagating in the circumferential direction of
a cylinder, the displacement components can be expressed

(2.15) ui(r, θ, z, t) = exp(ikbθ − iωt)Ui, (r)

where Ui (i = r, θ, z) represent the displacement amplitudes in the three direc-
tions, respectively. Expanding them into the Legendre polynomial series as

(2.16) Ui(r) =

∞∑
m=0

pimQm(r),

where pim (i = 1, 2, 3) are the expansion coefficients,

Qm(r) =

√
2m+ 1

(b− a)
Pm

(
2r − (b+ a)

(b− a)

)
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with Pm being the polynomial of the order m. The summation of polynomials
in representation (2.16) can be truncated at a finite value M , when higher order
terms do not cause any change in convergence.

Substituting representations (2.15) and (2.16) into (2.9), (2.10), (2.11), and
multiplying both sides of the resulting Eqs. (2.9), (2.10) and (2.11) by n-order
Legendre polynomials with n running from 0 to N , then integrating overr from
a to b and making use of the orthonormality of the polynomials, yields:

(2.17) k2

An,m11 An,m12 An,m13

An,m21 An,m22 An,m23

An,m31 An,m32 An,m33


p1m
p2m
p3m

+ k

Bn,m
11 Bn,m

12 Bn,m
13

Bn,m
21 Bn,m

22 Bn,m
23

Bn,m
31 Bn,m

32 Bn,m
33


p1m
p2m
p3m


+

Cn,m11 Cn,m12 Cn,m13

Cn,m21 Cn,m22 Cn,m23

Cn,m31 Cn,m32 Cn,m33


p1m
p2m
p3m

 = −ω2

Mn
m 0 0

0 Mn
m 0

0 0 Mn
m


p1m
p2m
p3m

 ,

where Mn
m, A

n,m
j,l , Bn,m

j,l and Cn,mj,l (j, l = 1, 2, 3) are the matrix elements and
given in the Appendix; j = 1 refers to Eq. (2.12), j = 2 to Eq. (2.13), j = 3 to
Eq. (2.14), l = 1 to p1m or displacement u, l = 2 to p2m or v and l = 3 to p3m or w.

Or, more concisely,

(2.18) k2A ·P + k1B ·P + C ·P = −w2M ·P,

where A, B, C, and M are matrices of order 3(M + 1) · 3(N + 1), and P =
[p1m p2m p3m]T.

It is worth noting that in previous research work [14–17], by doing some
mathematical manipulations, Eqs. (2.12)–(2.14) are expressed as the vanishing
determinant of the coefficients of p. The vanishing determinant of this system
is the dispersion relation. Some root-searching approaches such as the Newton
downhill approach are used to solve it, which are iterative and very time con-
suming, especially for the big valueM . To avoid the tedious iterative search pro-
cedure and improve the computational efficiency, here we present a quadrature-
free Legendre polynomial approach, which can transform Eqs. (2.12)–(2.14) into
a classical eigenvalue problem in the form AX = λX, instead of solving the
vanishing determinant.

Obviously, Eq. (2.18) states a quadratic eigenvalue problem in k for a given
real ω, and it does not have the structure of a general eigenvalue problem.
Based on an algebraic manipulation known as the Linear Companion Matrix me-
thod [34], we recast Eq. (2.18) into a classical eigenvalue problem with the first-
order wavenumber by doubling its algebraic size, as presented in the following.

Introducing a companion displacement vector field:

(2.19) Q = k ·P.
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Defining a companion matrix to (2.18) is

(2.20) D =

[
0 I3(M+1)

−A−1(ω2M + C) −A−1B

]
,

where I is the identity matrix.
Then Eq. (2.18) is more conveniently expressed as

(2.21) DX = kX

with X = [P Q]T.
It is a general eigenvalue problem in k, which can be solved by the “Eigen-

values” function in Mathematica. The real part of k (Re(k)) is related to the
phase velocity by V p = ω/Re(k), while the imaginary part of k (Im(k)) is
a measure of attenuation. Moreover, eigenvectors represent the displacement
or stress field distribution. In order to better process the solutions, we define
the ratio λ = Re(k)/Im(k). Once λ is given in a specified wavenumber range, all
modes can be divided into two types. One is the propagating strongly attenuated
mode, with a big Im(k); the other is propagating lowly attenuated mode, with
a small Im(k). In some regions, k is almost purely imaginary and in figures this
is indicated.

2.3. A quadrature-free polynomial approach with higher computation efficiency

Equation (2.17) involves various integral calculations, which were used to
solve the dispersion relation in previous researches [14–17]. It is noteworthy that
these integral calculations are very time-consuming, especially for the curved,
damped and anisotropic media. To avoid calculating the time-consuming integral
expressions, the analytic formulas of these integrals are derived by the recurrence
relation and orthogonality of the Legendre polynomial. Equation (2.17) has the
following five types of integral forms.

(2.22)

K1 =

b∫
a

Qn(r)Qm(r) dr, K2 =

b∫
a

Qn(r)
d

dr
Qm(r) dr,

K3 =

b∫
a

Qn(r)
d2

dr2
Qm(r) dr, K4 =

b∫
a

Qn(r)Qm(r)
d

dr
π(r) dr,

K5 =

b∫
a

Qn(r)
d

dr
Qm(r)

d

dr
π(r) dr.

Since the Legendre orthogonal polynomial is defined on a bounded interval
[−1, 1], we need to derive the analytical expressions of the above five integral
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calculations for any interval r ∈ [a, b]. The derivation process is a little tedious
and not given here. Using the integral transform technique and the properties of
the Legendre polynomials, we can get.

For K1:

b∫
a

Qm(r)Qn(r) dr =

√
2m+ 1

b− a

√
2m+ 1

b− a
(2.23)

×
b∫
a

Pm

(
2r − (b+ a)

b− a

)
Pn

(
2r − (b+ a)

b− a

)
dr

=
b− a

2

√
2m+ 1

b− a

√
2m+ 1

b− a

1∫
−1

Pm(t)Pn(t) dt

=
b− a

2

√
2m+ 1

b− a

√
2m+ 1

b− a
2

2n+ 1
δ(n,m)

with

t =
2r − (b+ a)

b− a
, δ(n,m) =

{
1, n = m,

0, n 6= m.

For K2:

b∫
a

rQm(r)
d

dz
Qn(r) dr =

√
2m+ 1

b− a

√
2m+ 1

b− a

×
b∫
a

rPm

(
2r − (b+ a)

b− a

)
d

dr
Pn

(
2r − (b+ a)

b− a

)
dr

=
b− a

2

√
2m+ 1

b− a

√
2m+ 1

b− a

1∫
−1

tPm(t)
d

dt
Pn(t) dt

+
b+ a

2

√
2m+ 1

b− a

√
2m+ 1

b− a

1∫
−1

Pm(t)
d

dt
Pn(t) dt.

If n+ 1 > m, and modulus (n−m, 2) = 0, l = (n−m)/2.

(2.24) K2 =
b− a

2

√
2m+ 1

b− a

√
2m+ 1

b− a
2(2n− 4l + 1)

2m+ 1
.
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And if n = m,

(2.25) K2 =
b− a

2

√
2m+ 1

b− a

√
2m+ 1

b− a
2(n+ 1)

2n+ 1
.

And if n > m, modulus (n−m, 2) = 1, l = (n−m− 1)/2.

(2.26) K2 =
b+ a

2

√
2m+ 1

b− a

√
2m+ 1

b− a
2(2n− 4l − 1)

2m+ 1
.

For K3:

(2.27)
∫ b

a
r2Qm(r)

d2

dr2
Qn(r) dr =

b− a
2

√
2m+ 1

b− a

√
2m+ 1

b− a

×
1∫
−1

Pm(t)

[
d2

dt2
Pn(t)− 2t

d

dt
Pn(t) + n(n+ 1)Pn(t)

]
dt

+ (b+ a)

√
2m+ 1

b− a

√
2m+ 1

b− a

1∫
−1

tPm(t)
d2

dt2
Pn(t) dt

+
(b+ a)2

4

b− a
2

√
2m+ 1

b− a

√
2m+ 1

b− a

∫ 1

−1
Pm(t)

d2

dt2
Pn(t) dt

=

[
b− a

2
+

(b+ a)2

4

b− a
2

+ (b+ a)

]√
2m+ 1

b− a

√
2m+ 1

b− a

1∫
−1

Pm(t)
d2

dt2
Pn(t) dt

+ [(n− 1)(b+ a)− (b− a)]

√
2m+ 1

b− a

√
2m+ 1

b− a

1∫
−1

Pm(t)
d

dt
Pn(t) dt

+

[
n(n+ 1)

b− a
2
− n(b− a)

]√
2m+ 1

b− a

√
2m+ 1

b− a

1∫
−1

Pm(t)Pn(t) dt

with

I1 =

1∫
−1

Pm(t)Pn(t) dt =
2

2n+ 1
δ(n,m);

and

I2 =

1∫
−1

Pm(t)
d

dt
Pn(t) dt =

2(2m− 4l − 1)

2n+ 1
,
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here m > n, modulus (m− n, 2) = 1, l = (m− n− 1)/2. Otherwise, I2 = 0.
And

I3 =

1∫
−1

Pm(t)
d2

dt2
Pn(t) dt =

2(2m− 4p− 3)(p+ 1)(2m− 2p− 1)

2n+ 1
,

here p = m−n−2
2 , k = m−n

2 , m > n + 1, modulus (m − n, 2) = 0. Otherwise,
I3 = 0.

For K4:

(2.28)
b∫
a

rQm(r)Qn(r)
d

dr
π(r) dr

=

b∫
a

f(r)[δ(r − a)− δ(r − b)] dr = f(a)− f(b)

with f(r) = rQm(r)Qn(r).
For K5:

(2.29)
b∫
a

r2Qm(r)
d

dz
Qn(r)

d

dz
π(r) dr

=

b∫
a

g(r)[δ(r − a)− δ(r − b)] dr = g(a)− g(b)

with g(r) = r2Qm(r) ddzQn(r).
The presented quadrature-free polynomial approach is very fast and easy to

implement. The computational efficiency is discussed in the following section.

3. Implementation and verification of the quadrature-free polynomial
approach

This section aims to validate the presented approach and discuss the cal-
culation time of solving eigenvalues. Since guided wave in a fractional order
waveguide has not been studied before, we firstly calculate the phase velocity
dispersion and attenuation curves of a guided wave in the Kelvin–Voigt vis-
coelastic hollow cylinder (α = 1) with big radius-thickness ratio (a = 999 mm,
η = 1000), and make a comparison with the known results. The hollow cylinder
with a sufficiently large radius-thickness ratio can be regarded as a flat plate.
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Predictably, the dispersion curves of the hollow cylinder are the same as those of
the plate with equivalent material. The material parameters are ρ = 1560 kg/m3,
C11 = 132 GPa, C12 = 6.9 GPa, C13 = 12.3 GPa, C22 = 5.9 GPa, C23 = 5.5 GPa,
C33 = 12.1 GPa, C44 = 3.32 GPa, C55 = 6.21 GPa, C66 = 6.15 GPa, η11 =
0.4 GPa, η12 = 0.001 GPa, η13 = 0.016 GPa, η22 = 0.037 GPa, η23 = 0.021 GPa,
η33 = 0.043 GPa, η44 = 0.009 GPa, η55 = 0.015 GPa, η66 = 0.02 GPa, and
h = 1 mm, as given in references [1, 13]. The frequency of characterization is
2 MHz. The series expansions is M = 20.

Figure 2(a) shows the available results for the phase velocity dispersion curves
from literature [13] based on a higher order plate theory. Figure 2(b) shows our
results. We can easily notice that results of two above methods are in excellent
agreement for the lower order modes. As pointed out in Reference [13, 14], the
higher order plate theory suffers from some limitations that prevent it from being

(a) (b)

Fig. 2. Phase velocity dispersion curves: (a) the results from [13]; (b) our results, black-SH
wave, red-symmetric Lamb wave, blue-antisymmetric Lamb wave.

(a) (b)

Fig. 3. Attenuation curves: (a) the results from [14]; (b) our results, with the same color
scheme in Fig. 2(b).
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used to solve the higher order modes in high frequency ranges. Figure 3(a) shows
the attenuation curves from literature [14], and Fig. 3(b) shows our results. The
attenuation curves obtained by our approach show good agreement with the
known results, demonstrating the effectiveness of the presented approach.

Since the above example is an integer order Kelvin–Voigt model, we make
a further validation on a fractional order Kelvin–Voigt viscoelastic hollow cylin-
der with small radius-thickness ratio. Equation (2.14) is decoupled and can be
solved analytically. When the boundary condition is not considered, Eq. (2.14)
becomes

(3.1) r2C̄44W
′′ + rC̄44W

′ − k2b2C̄66W = −ρr2ω2W,

where W represents the displacement amplitude in the z directions.
The general solution of Eq. (3.1) is

(3.2) W (r) = AJ [λ, ϑr] +BY [λ, ϑr],

where J and Y are Bessel functions of the first type and the second type, re-
spectively, and A and B are undetermined coefficients, and

λ =

√
k2b2C̄66√
C̄44

, ϑ =

√
ρω√
C̄44

.

Substituting Eq. (3.2) into the stress-free boundary condition, namely Trz =
C̄44

∂uz
∂r = 0, at r = a and r = b, we have

(3.3)
∣∣∣∣ J [λ− 1, ϑa]− J [λ+ 1, ϑa] Y [λ− 1, ϑa]− Y [λ+ 1, ϑa]
J [λ− 1, ϑb]− J [λ+ 1, ϑb] Y [λ− 1, ϑb]− Y [λ+ 1, ϑb]

∣∣∣∣ = 0.

Therefore, Eq. (3.3) expresses the dispersion relationship of the circumferential
SH wave.

We calculate the circumferential SH wave in the fractional Kelvin–Voigt vis-
coelastic hollow cylinder with a = 9 mm, η = 10 and α = 0.5, and compare our
results with the exact solutions, as shown in Fig. 4. We can see that polynomial
results match very well the analytical ones.

The convergence of the Legendre polynomial approach was discussed in de-
tail in previous research, and not evaluated again here. Having established the
effectiveness of the presented approach, we now consider the computational cost.
Since the process of solving eigenvalues takes the most of the computational time
for obtaining phase velocity dispersion and attenuation curves, the efficiency of
the polynomial approach is assessed by the criterion of solving eigenvalues at
given frequencies. The integral calculation time, analytical formula calculation
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(a) (b)

Fig. 4. Phase velocity and attenuation curves of the circumferential SH wave in a fractional
viscoelastic hollow cylinder with α = 0.5: (a) phase velocity curves; (b) attenuation curves.

time, total computational time for solving eigenvalues at 400 given input fre-
quencies, and the proportion of the integral time and analytical calculation time
to the total time are given (Desktop PC with Intel i5 CPU and 8 GB RAM).
Tables 1 and 2 show a comparison in terms of these computational times taken
to solve the eigenvalues for various truncation terms M . As can be seen from
Table 1, the integral calculation takes up a majority of the total time, which
occupies over 94% and reaches 357.196 s when M = 30. In comparison, the
analytical calculation time is very short, less than 2s when M = 30, as shown
in Table 2. The percentage of total time is small and decreases from 11.94% to
9.47% as M increases from 5 to 30. One can clearly see that the quadrature-free
polynomial approach is less time consuming. The integral time decreases from

Table 1. The computation times of the existing polynomial approach with
integral calculations.

t
M

5 10 15 20 30
Integral time 1.732 11.294 37.845 91.931 339.131
Total time 2.466 12.495 40.7 98.39 357.196
Percentage 70.24% 90.39% 92.99% 93.44% 94.94%

Table 2. The computation times of the quadrature-free polynomial approach.

t
M

5 10 15 20 * 30
Integral time 0.098 0.171 0.389 0.702 1.95
Total time 0.821 1.435 3.416 7.394 20.576
Percentage 11.94% 11.92% 11.39% 9.49% 9.47%
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339.131 s to 1.95 s for M = 30, and the total time is reduced by several times or
even several tens, e.g., 357.196 s compared with 20.576 s. This means a significant
time saving when plotting a set of dispersion curves. Obviously the quadrature-
free polynomial approach can dramatically improve the computational cost.

4. Numerical results and discussion

4.1. Guided circumferential waves in anisotropic viscoelastic hollow cylinders

4.1.1. Full three-dimensional (3D) spectrum A full 3D spectrum can provide
a clearer visualization of the solutions and a better understanding of the nature
of the modes, so we plot the 3D spectrum of the anisotropic Kelvin–Voigt vis-
coelastic hollow cylinder with a = 9 mm and η = 10, as shown in Fig. 5. The
material parameters are taken from [20], and given as follows,

[C] =



74.29 28.94 5.86 0.20 −0.11 37.19
25.69 5.65 0.0928 −0.0801 17.52

12.11 0.0133 −0.0086 0.22
4.18 1.31 0.0949

5.35 −0.0705
Sym 28.29

GPa,

[η] =



218 76.5 16.4 −3.60 0.688 116
71.1 19.2 −0.771 2.15 50

42.2 −0.9644 0.627 −3.07
11.1 2.89 −1.15

13.6 1.48
Sym 93.5

MPa,

and ρ = 1500 kg/m3, f̄ = 2 MHz. Figure 5 indicates that the spectrum ex-
hibits a symmetry. One difference between the viscoelastic and elastic spectra
concerns the symmetry. For the viscoelastic spectrum, all solutions are complex.
Differently, the elastic spectrum has purely real, purely imaginary and complex
branches, which is symmetric about the k = 0 and ω = 0 planes. That is, for
a given ω, if k is a solution, so is −k and ±k*(complex conjugate). But for
the viscoelastic spectrum, this is only true at low frequencies. At high frequen-
cies, if k satisfies the dispersion relation, then so do −k, but not their complex
conjugates. The viscoelastic spectrum exhibits the central symmetry. Therefore
the full 3D spectrum can be characterized by only the positive Im(k) versus ω.
And rotating them by 180◦ around the ω axis, the negative imaginary part can
be obtained. We can find that each minimum and maximum of the segments
of the almost purely imaginary branches is a point of intersection with a com-
plex branch. To the best of the authors’ knowledge, the full 3D spectrum for an
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anisotropic Kelvin–Voigt viscoelastic hollow cylinder presented here has not been
published before. Furthermore, we calculate the 2D phase velocity dispersion and
attenuation curves of a viscoelastic hollow cylinder with big radius-thickness ra-
tio (η = 1000, a = 999 mm), approximately regarded as a plate. The obtained
results are shown in Fig. 6. Its good agreement with the available results of
a plate in [20] from the semi-analytical finite element method was checked by
authors, and no difference was found between them. This once again shows the
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Fig. 5. Full 3D spectrum of an anisotropic Kelvin–Voigt viscoelastic hollow cylinder.

(a) (b)

Fig. 6. (a) Phase velocity dispersion and (b) attenuation for a viscoelastic hollow cylinder
with a large radius-thickness ratio.



A quadrature-free Legendre polynomial. . . 137

validation of our approach. The literature results can be found in [20] and are
not reproduced here.

4.1.2. Comparisons of two viscoelastic models. In this section, the guided wave
characteristics of both the Kelvin–Voigt and the hysteretic viscoelastic models
are respectively illustrated to compare their differences. Figure 7 presents the
resulting phase velocity dispersion and attenuate curves for the two viscoelastic
hollow cylinder models, with a = 9 mm and η = 10. We can clearly see from
Fig. 7(a) and Fig. 7(b) that both models do not affect the phase velocity dis-
persion results in a substantial manner. But significant effects can be found on
the attenuation curves illustrated by Fig. 7(c) and 7(d). The attenuation of the
low order modes increases linearly with frequency in the hysteretic model, but
increases by a quadratic function of the frequency in the Kelvin–Voigt model.
At the characterization frequency 2 MHz, the attenuations of the two models
are the same. This is because both models have an equivalent material stiffness
matrix at this frequency. For the Kelvin–Voigt model, the attenuation is smaller
when the working frequency f < f̄ , and larger when f > f̄ , compared with the
hysteretic model.

(a) (b)

(c) (d)

Fig. 7. Attenuation curves for (a) hysteretic model and (c) Kelvin–Voigt model; phase
velocity dispersion curves for (b) hysteretic model and (b) Kelvin–Voigt model.
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(a) (b)

Fig. 8. D top-down view of the 3D spectrum in Fig. 4, in terms of Re(k)− Im(k): (a)
Kelvin–Voigt model and (b) hysteretic model.

(a) (b)

Fig. 9. 2D side-view of the 3D spectrum for the Kelvin–Voigt model; (a) and (b) are the
same f − Im(k) curves using different scales.

(a) (b)

Fig. 10. 2D side-view of the 3D spectrum for the hysteretic model; (a) and (b) are the same
f − Im(k) curves using different scales.
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For convenience of contrast, we present the projection view of the 3D spec-
trum into the Re(k)–Im(k) plane for both viscoelastic models, as shown in Fig. 8.
Figure 8 indicates the propagating lowly attenuated modes, i.e. with small Im(k)
and large Re(k), are different for the two models. While for the highly attenu-
ated modes, i.e. with large Im(k), the f − Im(k) relations for both viscoelastic
models are almost identical, as can be seen in Figs. 9(a) and 10(a). They have
distinctions only when Im(k) is very small, as shown in Figs. 9(b) and 10(b). The
reason lies in that the perfectly elastic model already possesses the modes with
purely imaginary wavenumbers or complex wavenumbers with large imaginary
parts. The variation of such wavenumbers caused by damping is very slight, com-
pared to the existing large Im(k) in an elastic medium. Instead, for the strongly
propagating waves, corresponding to the modes with purely real wavenumbers in
the perfectly elastic model, the difference in imaginary wavenumbers for the two
viscoelastic models is significant. Such waves can propagate a very long distance
and are in effect very useful in non-destructive evaluation.

4.2. Guided circumferential waves in fractional Kelvin–Voigt viscoelastic hollow
cylinders

4.2.1. Phase velocity dispersion and attenuation curves. In this section we inves-
tigate guided circumferential waves in fractional Kelvin–Voigt viscoelastic hollow
cylinders. In order to reveal the influence of fractional order better, we consider
the same orthotropic viscoelastic material given in Section 3. The circumferential
Lamb-like and SH waves are decoupled, so we treat them separately. Figures 11
and 12 show the phase velocity dispersion and attenuation curves of the integer
(α = 1) and the fractional order (α = 0.9) Kelvin–Voigt viscoelastic hollow cylin-
ders. It can be observed that the fractional order has almost no effects on the
phase velocity dispersion but significant effects on the attenuation. The attenua-
tion of the fractional order model is smaller than that of the integer one. For the
SH wave, it has a rapid attenuation below the undamped cut-off frequency and
reaches a minimum, then almost increases linearly with frequency. The frequency
of the minimum attenuation for the fractional order model is slightly smaller
than that for the integer one. For the first Lamb-like mode, the attenuation is
about linearly increasing from zero frequency. For the higher order modes, the
attenuation decreases rapidly from the undamped cut-off frequency and reaches
a minimum, then remains almost unchanged (tending to form plateau) in a fre-
quency range in which the phase velocity dispersion curve also has a plateau.
After that the attenuation increases first and then decreases and increases in
the end with increasing the frequency. For guided wave non-destructive testing
of viscoelastic structures, the minimum attenuation frequency is of significance
and should be chiefly considered, since it is usually related to the non-dispersive
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(a) (b)

(c) (d)

Fig. 11. Lamb-like wave attenuation for (a) the integer model and (c) fractional (α = 0.9);
phase velocity dispersion for (b) the integer model and (d) fractional (α = 0.9) model.

(a) (b)

(c) (d)

Fig. 12. SH wave attenuation for (a) the integer model and (c) fractional (α = 0.9) model;
phase velocity dispersion for (b) the integer model and (d) fractional (α = 0.9) model.
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region. Indeed the great attenuation level is likely associated with strong dis-
persion of the propagation, which can be illustrated more clearly later when
presenting Fig. 15. The attenuation curves show that there are large differences
in the attenuation of different modes and this is a major factor in mode selection
for practical testing.

4.2.2. Effect of fractional order on phase velocity dispersion and attenuation.
Shown in Fig. 13 there are the attenuation curves of the Lamb-like wave for var-
ious fractional Kelvin–Voigt viscoelastic hollow cylinders, with α = 0.5, α = 0.6
and α = 0.7. Comparing Fig. 13(a) to Fig. 13(c), the effect of fractional order is
clearly demonstrated. The attenuation becomes smaller as the order decreases.
Except for the different attenuation amplitude, the trend of these curves is very
similar. For instance, the peak value of the attenuation, for the mode marked A1,
reaches 7 Np/m at about 1.3 MHz when α = 0.7, and 0.36 Np/m when α = 0.6,
and 0.12 Np/m when α = 0.5. The peak values for the three cases occur at nearly
the same frequency. As mentioned above, the fractional order has almost no ef-
fect on phase velocity dispersion, so the corresponding phase velocity dispersion
curves are not given here.
(a) (b)

(c)

Fig. 13. Attenuation curves for various fractional viscoelastic hollow cylinders, (a) α = 0.7,
(b) α = 0.6, (c) α = 0.5.
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4.2.3. Effect of material parameters on phase velocity dispersion and attenuation.
The sensitivity of the guided waves to variations of material parameters (Cijkl
and µijkl) is investigated in this section. To study the effect of the viscoelasticity
on phase velocity dispersion and attenuation curves, the viscoelastic rate γ is
gradually increased by varying the imaginary parts of the complex moduli from
0.8 to 1.2 [31], of the nominal values given in Section 3. Accordingly Eq. (2.5)
becomes:

¯̃Cijkl = C̃ijkl + (−iω/ ˜̄ω)α(γµijkl).

Shown in Fig. 14 there are the phase velocity dispersion and attenuation curves
for three fractional Kelvin–Voigt viscoelastic hollow cylinders (α = 0.9), with
γ = 0.8, γ = 1 and γ = 1.2. The nearly identical phase dispersion curve shape in
Fig. 14(b) indicates that the effect of changing the imaginary part on the phase
velocity dispersion is very little. Contrary on the attenuation curves, as shown
in Fig. 14(a), the effect is very strong. The attenuation becomes bigger with the
increase of γ, which indicates that the attenuation is related to the viscoelasticity
of the hollow cylinder.

(a) (b)

Fig. 14. (a) Attenuation curves and (b) phase velocity dispersion curves for viscoelastic
hollow cylinders with different viscoelastic rates.

Similarly, we also calculated the phase velocity dispersion and attenuation
curves with variations in the real parts of the complex moduli, namely the elastic
moduli. In this case, the complex moduli are set to be

¯̃Cijkl = βC̃ijkl + (−iω/ ˜̄ω)αµijkl,

with, the elastic rate β is varied from 0.8 to 1.2 [31]. Shown in Fig. 15 there
are the phase velocity dispersion and attenuation curves for three cases with
β = 0.8, β = 1 and β = 1.2. It can be clearly noticed that the effect of chang-
ing the real part Cij on both the phase velocity dispersion and attenuation is
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(a) (b)

Fig. 15. (a) Attenuation curves and (b) phase velocity dispersion curves for viscoelastic
hollow cylinders with different viscoelastic rates.

significant. The greater the elastic rate β, the bigger phase velocity while the
smaller the attenuation. This indicates that the phase velocity and attenuation
of guided waves are related to the elastic modulus of the viscoelasticity model.
Moreover, the non-dispersive region becomes wider with the increase of β, and
correspondingly the minimum attenuation frequency range becomes bigger. With
the increase of the elastic rate β, the frequency reaching the maximum atten-
uation increases. The phase velocity dispersion and attenuation curves for the
A1 mode with β = 0.8 are plotted together, as shown in Fig. 16. It is observed
that the dispersion becomes strong when the attenuation reaches the maximum,
which indicates the great attenuation level is associated with strong dispersion of
the propagation. Moreover, the influence of the viscoelastic rate and the elastic
rate on the SH wave is similar to that on the Lamb-like wave, so not discussed
again here.

Fig. 16. Phase velocity change of the A1 mode at the frequency of attenuation sudden
change.
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Further, we investigate the influence of the specified material parameters on
phase velocity dispersion and attenuation. Fortunately, the SH wave dispersion
relation only involves four parameters besides the material density, i.e. C44, C66,
µ44 and µ66. We reduce the four parameters to half of the original, and calculate
the corresponding phase velocity dispersion and attenuation curves for the frac-
tional order Kelvin–Voigt viscoelastic hollow cylinder with α = 0.9, as shown
in Figs. 17 and 18. Since the change of µ44 and µ66 has almost no effect on the
phase velocity dispersion, the results are not given here. Figure 17 shows that
µ44 has a bigger influence on the attenuation curves than µ66, and the influence
becomes more significant as the order and frequency increase. The frequency
reaching the minimum attenuation value is lower for reducing µ44 than that for
reducing µ66. Figure 18 shows that the influence of reducing C44 is very different
from that of reducing C66. When C44 is reduced, the overall frequency becomes
lower for both the phase velocity dispersion and the attenuation. Reducing C44

Fig. 17. Attenuation curves for the fractional Kelvin–Voigt viscoelastic hollow cylinder when
µ44 and µ66 are reduced.

(a) (b)

Fig. 18. Phase velocity curves (a) and attenuation curves (b) for the fractional Kelvin–Voigt
viscoelastic hollow cylinder when C44 and C66 are reduced.
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has no effect on the phase dispersion of the lowest mode. When C66 is reduced,
for all modes, the phase velocity becomes smaller but the attenuation becomes
larger, in the whole frequency. The minimum attenuation value becomes bigger,
contrary to the effect of C44. For higher order modes, C66 has very little effect at
the early areas of high phase velocity and high attenuation. On the whole, the
phase velocity and attenuation mainly is primarily determined by C66 and the
frequency is chiefly determined by C44.

5. Conclusions

In this study, The Weyl definition of fractional order derivatives and the
quadrature-free Legendre polynomial approach are employed to investigate the
guided wave in an anisotropic fractional order viscoelastic hollow cylinder. The
presented approach transforms the coupled wave differential equations into an
eigenvalue problem, avoiding the tedious search procedure by the iterative me-
thod. The capability of the presented approach to obtain complete three-dimen-
sional dispersion solutions has been demonstrated, which throws new light onto
wave problems involving curved structures or anisotropic viscoelastic media
which are often very demanding for conventional approaches. The main results
are summarized as follows:

(1) The quadrature-free scheme of the Legendre polynomial approach can
dramatically improve the computational efficiency of guided wave problems,
which is non-iterative and easy to implement anisotropy is straightforwardly
handled and all modes are easily obtained.

(2) For the viscoelastic spectrum, at high frequencies if k satisfies the disper-
sion relation, then so do −k, but not their complex conjugates. This is different
from the elastic spectrum.

(3) Both the Kelvin–Voigt and hysteretic viscoelastic models have almost
no difference in phase velocity results but have strong influences on attenuation
curves. At the low attenuation, the difference of wave features for both viscoelas-
tic models is significant. At the high attenuation, the difference is little.

(4) The fractional order can significantly affect attenuation curves, and the
attenuation becomes smaller as the order decreases. The fractional order has
almost no effect on phase velocity dispersion. The great attenuation level is
likely related to the strong wave dispersion.

(5) The material parameters (elastic modulus and viscoelastic modulus) have
significant effects on dispersion and attenuation curves. The viscoelasticity effect
on the phase velocity dispersion and attenuation is determined not only by the
viscoelastic modulus but also by the elastic modulus The greater the elastic rate,
the bigger phase velocity while the smaller the attenuation.
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Appendix

The resulting equations in terms of displacements for an anisotropic fractional
Kelvin–Voigt viscoelastic model:

(2.9)
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∂r∂θ

(
∂αuθ
∂tα

)
+ C44

∂uz
∂r

+ η44
∂

∂r

(
∂αuz
∂tα

)
+ 2C46

∂2uz
∂r∂θ

+2η46
∂2

∂r∂θ

(
∂αuz
∂tα

)]
+

[
C56

∂2ur
∂θ2

+η56
∂2

∂θ2

(
∂αur
∂tα

)
+C16

∂ur
∂θ

+η16
∂

∂θ

(
∂αur
∂tα

)
+ C16

∂2uθ
∂θ2

+ η16
∂2

∂θ2

(
∂αuθ
∂tα

)
− C56

∂uθ
∂θ
− η56

∂

∂θ

(
∂αuθ
∂tα

)
+ C66

∂2uz
∂θ2

+ η66
∂2

∂θ2

(
∂αuz
∂tα

)]
π(r)

}
+

{
r2(C34

∂ur
∂r

+ η34
∂

∂r

(
∂αur
∂tα

)
+ C45

∂uθ
∂r

+ η45
∂

∂r

(
∂αuθ
∂tα

))
+ r2

(
C44

∂uz
∂r

+ η44
∂

∂r

(
∂αuz
∂tα

))
+ r

[
C14ur + η14

(
∂αur
∂tα

)
+C45

∂ur
∂θ

+η45
∂

∂θ

(
∂αur
∂tα

)
−C45uθ−η45

(
∂αuθ
∂tα

)
+C14

∂uθ
∂θ

+η14
∂

∂θ

(
∂αuθ
∂tα

)
+ C46

∂uz
∂θ

+ η46
∂

∂θ

(
∂αuz
∂tα

)]}
π′(r) = ρr2π(r)

∂2uz
∂t2

.
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For the orthotropic case, Eqs. (2.9), (2.10) and (2.11) are simplified to:

(2.12)

{
r2
(
C33

∂2ur
∂r2

+ η33
∂2

∂r2

(
∂αur
∂tα

))
+ r

[
C33

∂ur
∂r

+ η33
∂

∂r

(
∂αur
∂tα

)
+ (C13 + C55)

∂2uθ
∂r∂θ

+ (η13 + η55)
∂2

∂r∂θ

(
∂αuθ
∂tα

)]
+

[
−C11ur − η11

(
∂αur
∂tα

)
+C55

∂2ur
∂θ2

+η55
∂2

∂θ2

(
∂αur
∂tα

)
−(C11+C55)

∂uθ
∂θ
−(η11+η55)

∂

∂θ

(
∂αuθ
∂tα

)]}
π(r)

+

{
r2
(
C33

∂ur
∂r

+ η33
∂

∂r

(
∂αur
∂tα

)

)
+ r

[
C13ur + η13

(
∂αur
∂tα

)
+ C13

∂uθ
∂θ

+ η13
∂

∂θ

(
∂αuθ
∂tα

)]}
π′(r) = ρr2π(r)

∂2ur
∂t2

,

(2.13)

{
r2(C55

∂2uθ
∂r2

+ η55
∂2

∂r2

(
∂αuθ
∂tα

))
+ r

[
(C13 + C55)

∂2ur
∂r∂θ

+ (η13 + η55)
∂2

∂r∂θ

(
∂αur
∂tα

)
+ C55

∂uθ
∂r

+ η55
∂

∂r

(
∂αuθ
∂tα

)]
+

[
(C11 + C55)

∂ur
∂θ

+ (η11 + η55)
∂

∂θ

(
∂αur
∂tα

)
+ C11

∂2uθ
∂θ2

+ η11
∂2

∂θ2

(
∂αuθ
∂tα

)
− C55uθ − η55

(
∂αuθ
∂tα

)]}
π(r) +

{
r2(C55

∂uθ
∂r

+ η55
∂

∂r

(
∂αuθ
∂tα

))
+ r

[
C55

∂ur
∂θ

+ η55
∂

∂θ

(
∂αur
∂tα

)
−C55uθ − η55

(
∂αuθ
∂tα

)]}
π′(r) = ρr2π(r)

∂2uθ
∂t2

,

(2.14)

{
r2(C44

∂2uz
∂r2

+ η44
∂2

∂r2

(
∂αuz
∂tα

))
+ r

[
C44

∂uz
∂r

+ η44
∂

∂r

(
∂αuz
∂tα

)]
+

[
C66

∂2uz
∂θ2

+ η66
∂2

∂θ2

(
∂αuz
∂tα

)]
π(r) + r2

(
C44

∂uz
∂r

+ η44
∂

∂r

(
∂αuz
∂tα

))
π′(r)

= ρr2π(r)
∂2uz
∂t2

.

The matrix elements in Eq. (17) are:

Aj,m11 = − b2(C55 + (−iω)αη55)u(m, 0, 0, j),

Aj,m22 = −b2(C11 + (−iω)αη11)u(m, 0, 0, j),

Aj,m33 = −b2(C66 + (−iω)αη66)u(m, 0, 0, j),

Aj,m12 = Aj,m21 = Aj,m13 = Aj,m31 = Aj,m23 = Aj,m32 = 0;
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Bj,m
12 = {ib(C13 + (−iω)αη13 + C55 + (−iω)αη55)u(m, 1, 1, j)

− ib(C11 + (−iω)αη11)u(m, 0, 0, j)

− ib(C55 + (−iω)αη55)u(m, 0, 0, j) + ib(C13 + (−iω)αη13)k(m, 1, 0, j)},
Bj,m

21 = {ib(C13 + (−iω)αη13 + C55 + (−iω)αη55)u(m, 1, 1, j)

+ ibC55u(m, 0, 0, j) + ib(−iω)αη55u(m, 0, 0, j)

+ ib(C11 + (−iω)αη11)u(m, 0, 0, j) + ib(C55 + (−iω)αη55)k(m, 1, 0, j)},
Bj,m

11 =Bj,m
22 = Bj,m

33 = Bj,m
13 = Bj,m

31 = Bj,m
23 = Bj,m

32 = 0;

Cj,m11 = {(C33 + (−iω)αη33)u(m, 2, 2, j) + (C33 + (−iω)αη33)u(m, 1, 1, j)

− (C11 + (−iω)αη11)u(m, 0, 0, j) + (C33 + (−iω)αη33)k(m, 2, 1, j)

+ (C13 + (−iω)αη13)k(m, 1, 0, j)},
Cj,m22 = {(C55 + (−iω)αη55)u(m, 2, 2, j) + (C55 + (−iω)αη55)u(m, 1, 1, j)

− (C55 + (−iω)αη55)u(m, 0, 0, j) + (C55 + (−iω)αη55)k(m, 2, 1, j)

− (C55 + (−iω)αη55)k(m, 1, 0, j)},
Cj,m33 = {(C44 + (−iω)αη44)u(m, 2, 2, j) + (C44 + (−iω)αη44)u(m, 1, 1, j)

+ (C44 + (−iω)αη44)k(m, 2, 1, j)},
Cj,m12 = Cj,m21 = Cj,m13 = Cj,m31 = Cj,m23 = Cj,m32 = 0;

M j
m = ρu(m, 2, 0, j),

where

u(m, l, n, j) =

b∫
a

Q∗j (r)r
l ∂
nQm(r)

∂rn
dr;

k(m, l, n, j) =

b∫
a

Q∗j (r)r
l ∂π(r)

∂r

∂nQm(r)

∂rn
dr.
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