PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of surfactant-modified montmorillonite in nitrophenol removal by adsorption

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quaternary ammonium salts (QASs) such as 1-methyl-di-nonyl-1 phenyl ammonium iodide (QAS1) and 1-methyl-di-dodecyl-1 phenyl ammonium iodide (QAS2) were newly synthesized by complete alkylation reaction for modification of sodium montmorillonite (Mt). The sodium montmorillonite was modified via an ion-exchange reaction with QAS1 and QAS2, and two organoclays, Mt1 and Mt2, have been obtained. The synthesized quaternary ammonium salts were analyzed by nuclear magnetic resonance spectroscopy (NMR). The organoclays (Mt1 and Mt2) were characterized by a range of methods including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The adsorption capacities of the synthesized organo-montmorillonites for the hydrophobic organic pollutant 4-nitrophenol (4-NP) have been evaluated. The distances between the organoclay layers showed a much better opening than that reported in the literature. The results show that the adsorption capacity increased in the order Mt2 > Mt1. The adsorption capacities of Mt1 and Mt2 for 4-NP were 77% and 81%, respectively.
Rocznik
Strony
19--33
Opis fizyczny
Bibliogr. 19 poz., tab., rys.
Twórcy
  • Food Engineering, Engineering Faculty, Istanbul Aydin University, Istanbul, 34295, Turkey
Bibliografia
  • [1] SHEN H.M., ZHU G.Y., YU W.B., WU H.K., JI H.B., SHI H.X., SHE Y.B., ZHENG Y.F., Fast adsorption of p-nitrophenol from aqueous solution using β-cyclodextrin grafted silica gel, Appl. Surf. Sci., 2015, 356, 1155.
  • [2] PARK Y., AYOKO G.A., KURDI R., HORVATH E., KRISTOF J., FROST R.L., Adsorption of phenolic compounds by organoclays: Implications for the removal of organic pollutants from aqueous media, J. Coll. Int. Sci., 2013, 406, 196.
  • [3] PACURARIU C., MIHOC G., POPA A., MUNTEAN S., Adsorption of phenol and p-chlorophenol from aqueous solutions on poly (styrene-co-divinylbenzene) functionalized materials, Chem. Eng. J., 2013, 222, 218.
  • [4] HATEM A.A., MAAH M.J., YAHYA R., BINABAS M.R., Isotherms, kinetics and thermodynamics of 4-nitrophenol adsorption on fiber-based activated carbon from coconut husks prepared under optimized conditions, Asian J. Chem., 2013, 25 (17), 9573.
  • [5] BAYSAL G., AYDIN H., UZAN S., HOSGOREN H., Investigation of antimicrobial properties of QASs+ (novel synthesis), Russ. J. Phys. Chem. B, 2018, 12 (4), 696.
  • [6] ZHOU Q., FROST R.L., HE H., XI Y., LIU H., Adsorbed para-nitrophenol on HDTMAB organoclay. An TEM and infrared spectroscopic study, J. Coll. Int. Sci., 2007, 307, 357.
  • [7] AYDIN H., BAYSAL G., BULUT Y., Utilization of walnut shells (Juglans regia) as an adsorbent for the removal of acid dyes, Des. Water Treat., 2009, 2, 139.
  • [8] ZERMANE F., BOURAS O., BAUDU M., BASLY J.P., Cooperative coadsorption of 4-nitrophenol and basic yellow 28 dye onto an iron organo-inorgano pillared montmorillonite clay, J. Coll. Int. Sci., 2010, 350, 316.
  • [9] BAYSAL G., Investigation analysis results and modification of Na+-montmorillonite with quaternary ammonium salt and ionic liquid, Int. J. Food Eng., 2015, 1, 3.
  • [10] KIM N.H., MALHOTRA S.V., XANTHOS M., Modification of cationic nanoclays with ionic liquids, Micropor. Mesopor. Mat., 2006, 96, 29.
  • [11] ULLAH H., NAFEES M., IQBAL F., SAIFULLAH M.A., SHAH A., WASEEM A., Adsorption kinetics of Malachite Green and Methylene Blue from aqueous solutions using surfactant-modified organoclays, Acta Chim. Slov., 2017, 64, 449.
  • [12] PARK Y., AYOKO G.A., KURDI R., HORVATH E., KRISTOF J., FROST R.L., Structural characterization and environmental application of organoclays for the removal of phenolic compounds, J. Coll. Int. Sci., 2013, 393, 319.
  • [13] OFOMAJA A.E., UNUABONAH E.I., Kinetics and time-dependent Langmuir modeling of 4-nitrophenol adsorption onto Mansonia sawdust, J. Taiwan Inst. Chem. Eng., 2013, 44, 566.
  • [14] VARANK G., DEMIR A., YETILMEZSOY K., TOP S., SEKMAN E., BILGILI M.S., Removal of 4-nitrophenol from aqueous solution by natural low-cost adsorbents, Indian J. Chem. Technol., 2012, 19, 9.
  • [15] BORISOVER M., BUKHANOVSKY N., LAPIDES I., YARIV S., Thermal treatment of organoclays. Effect on the aqueous sorption of nitrobenzene on n-hexadecyltrimethyl ammonium montmorillonite, Appl. Surf. Sci., 2010, 256, 5539.
  • [16] XIN X., WANG J., YU H.Q., DU B., WEI Q., YAN L.G., Removal of o-nitrobenzoic acid by adsorptionon to a new organoclay: montmorillonite modified with HDTMA microemulsion, Environ. Techn., 2011, 32, 452.
  • [17] NAFEES M., WASEEM A., Organoclays as a sorbent material for phenolic compounds: A review, Clean Soil, Air, Water, 2014, 42 (11) available online, https://onlinelibrary.wiley.com/doi/abs/10.1002 /clen.201300312
  • [18] DOS S.A., VIANTEA M.F., POCHAPSKI D.J., DOWNS A.J., ALMEIDA C.A.P., Enhanced removal of p-nitrophenol from aqueous media by montmorillonite clay modified with a cationic surfactant, J. Hazard. Mater., 2018, 355, 141.
  • [19] PARK Y., AYOKO G.A., FROST R.L., Characterisation of organoclays and adsorption of p-nitrophenol. Environmental application, J. Coll. Int. Sci., 2011, 360, 440.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-917639cf-03fa-4f63-9acd-7a8605f40553
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.