PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Visual Effects of Surface Emissivity in Thermal Imaging

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses the impact of surface emissivity on the thermograms, obtained from a thermal imaging camera during the measurements of construction objects. The study was carried out as an analysis of the digital and thermal images for three selected materials types of building finishing such as: wood outside doors, cement-lime plaster and glass façade. The images obtained from the exterior and from the interior of the buildings were compared and analyzed in terms of the spectrum intensity within the range of ambient temperature. The result of the conducted research shows how important it is to use both side images for such details as locks, door knobs and handles to properly assess the optional light reflections, especially on glossy surfaces. The influence of the most significant factors on the surface emissivity, such as direction of emission θ, surface temperature TS, radiation wavelength λ, time τ, was discussed on the basis of the experiment. The measurements were made using a Flir T440bx thermal imaging camera, while for the analysis of thermal images and the generation of graphs, the Flir Tools+ 6.4.18039.1003 software was used. For all tested materials, the emissivity value was estimated using a camera and black insulating tape characterized by a known emissivity value ε = 0.98. The study of materials with different emissivity under the reference conditions helped to identify the influence of material reflectivity on the obtained temperature spectrum values and to correctly perform the research. The temperature ranged between 269–293 K, but in particular measurements, the range was reduced. The thermal images reveals additional unexpected details of insulation discontinuity, the indication of which is necessary for building modernization. The wood door joinery research showed the leakage, which disqualifies them from use in low energy buildings in much more definite way because the temperature range resulting from heat outflow approaches even 15 K. The use of glass wind insulation boards can eliminate the wood door icing, which occurs at a temperature of about 268 K, and at the same time, increase the temperature of the shielded door by about 10 K.
Twórcy
  • Lublin University of Technology, Fundamentals of Technology Faculty, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
  • Lublin University of Technology, Fundamentals of Technology Faculty, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
  • Lublin University of Technology, Fundamentals of Technology Faculty, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
  • 1. Avdelidis N.P. and Moropoulou A. Emissivity considerations in building thermography. Energy and Buildings, 35(7), 2003, 663–667.
  • 2. Babko R., Szulżyk-Cieplak J., Danko Y., Duda S., Kirichenko-Babko M., Łagód G. Effect of stormwater system on the receiver. Journal of Ecological Engineering, 20(6), 2019, 52-59.
  • 3. Balaras C. and Argitiou A.A. Infrared thermography for building diagnostics. Energy and buildings, 34(2), 2002, 171–183.
  • 4. Brzyski P., Barnat-Hunek D., Suchorab Z., Łagód G. Composite materials based on hemp and flax for low-energy buildings. Materials, 10(5), 2017,
  • 5. Lo T.Y. and Choi K.T.W. Building defects diagnosis by infrared thermography. Structural Survey, 22(5), 2004, 259-263.
  • 6. Maldague X. et al. Theory and practice of infrared technology for nondestructive testing, 2001.
  • 7. Marynowicz A. Determination of building construction material thermal properties by means of thermal vision technique (in Polish). Oficyna Wydawnicza Politechniki Opolskiej, 165, 2019.
  • 8. Nowak H. Application of thermal vision in civil engineering (in Polish). Oficyna Wydawnicza Politechniki Wrocławskiej, 332, 2012.
  • 9. Rudowski G. Thermal vision and its applications (in Polish). Wydawnictwa Komunikacji i Łączności, 210, 1978.
  • 10. Styczeń J. and Urzędowski A. Application of thermal vision measurements to determine quality of heat loss in small houses.(in Polish) [In:] Wybrane zagadnienia w zakresie budownictwa, architektury i gospodarki przestrzennej, 2017, 109–120.
  • 11. Suchorab Z., Frac M., Guz Ł., Oszust K., Łagód G., Gryta A., Biliśka-Wielgus N., Czerwiński J. A method for early detection and identification of fungal contamination of building materials using e-nose, PLoS One, 14(4), 2019, 1-17.
  • 12. Urzędowski A., Wójcicka-Migasiuk D. and Styczeń J. Analysis of thermal properties and heat loss in construction and isothermal materials of multilayer building walls. Advances in Science and Technology Research Journal, 11(2), 2017, 33–37.
  • 13. Urzędowski A. and Wójcicka-Migasiuk D., Visual analysis of heat transport in unique object, Advances in Science and Technology Research Journal, 28(9), 2015, 153–159.
  • 14. Van De Walle W. and Janssen H. Validation of a 3D pore scale prediction model for the thermal conductivity of porous building materials. 11th Nordic Symposium on Building Physics, NSB2017, 11-14 June 2017, Trondheim, Norway, Energy Procedia 132, 2017, 225–230.
  • 15. Vollmer M. and Möllmann K.P. Infrared thermal imaging: fundamentals, research and applications. John Wiley & Sons, 2017.
  • 16. Wójcicka-Migasiuk D. and Paśnikowska-Łukaszuk M. Rola bezpieczeństwa energetycznego w infrastrukturze budowlanej. [In:] D. Wójcicka-Migasiuk (Ed.) Wybrane aspekty bezpieczeństwa w technice i gospodarowaniu energią, Wydawnictwo Politechniki Lubelskiej, Lublin, 2019, 96–104.
  • 17. Yoshitaka O., Hiura T., Bryophytes as bioindicators of the atmospheric environment in urban-forest landscapes. Landscape and Urban Planning, 167, 2017, 348-355.
  • 18. Zgryza Ł., Raczyńska A. and Paśnikowska-Łukaszuk M. Thermovisual measurements of 3D printing of ABS and PLA filaments. Advances in Science and Technology Research Journal, 3(12), 2018, 266–271.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91756afa-08ba-4e19-926b-cc1b3ba7fe2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.