Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes a new third-order Chebyshev bandpass filter based on the substrate integrated waveguide (SIW) manufacturing technology using an inductive iris and a defected ground structure (DGS) station to resonate in the Ka frequency band, intended for wireless communication applications. All steps that are necessary for designing such a filter have been described in detail based on specific analytical equations harnessed to calculate the different synthesizable parameters of the proposed band-pass filter design, such as the coupling matrix, quality coefficients and initial geometric dimensions. The filter’s ideal frequency response is extracted from an equivalent circuit employing localized elements developed with the use of Design Microwave Office Software. Otherwise, HFSS is employed to set the initial parameters of the proposed topology that will not meet the target specifications defined previously. Accordingly, optimization procedures are necessary for different SIW band-pass filter parameters to reach a high frequency response for the proposed design. The detailed results presented show high efficiency of the SIW technology that offers good performance with lower filter volumes. Two topologies have been developed and then optimized to demonstrate the usefulness of EM software.
Słowa kluczowe
Rocznik
Tom
Strony
49--56
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Laboratory of Technologies of Communications, Dr. Tahar Moulay University of Saida, Saida, Algeria
autor
- Laboratory of Technologies of Communications, Dr. Tahar Moulay University of Saida, Saida, Algeria
autor
- Laboratory of Telecommunications, Abu Bakr Belkaid University of Tlemcen, Tlemcen, Algeria
autor
- Laboratory of Telecommunications, Abu Bakr Belkaid University of Tlemcen, Tlemcen, Algeria
autor
- Laboratory of Technologies of Communications, Dr. Tahar Moulay University of Saida, Saida, Algeria
Bibliografia
- [1] I. Ohta, K. Toda, M. Kishihara, and T. Kawai, „Design of cruciform substrate-integrated waveguide hybrids based on H-plane planar circuit approach", in Proc. of Asia-Pacific Microw. Conf., Bangkok, Thailand, 2007, pp. 683-686 (DOI: 10.1109/APMC.2007.4554871).
- [2] M. Bozzi, L. Perregrini, K. Wu, and P. Arcioni, „Current and future research trends in substrate integrated waveguide technology", Radio Engin., vol. 18, no. 2, 2009 [Online]. Available: https://www.radioeng.cz/fulltexts/2009/09 02 201 209.pdf
- [3] A. Coves et al., „A novel passband filter based on a periodically drilled SIW Structure", Radio Sci., vol. 51, no. 4, pp. 328-336, 2016 (DOI: 10.1002/2015RS005874).
- [4] L. Silvestri et al., „Modeling and implementation of perforated SIW filters", in Proc. IEEE MTT-S Int. Conf. on Numer. Electromag. And Multiphys. Model. and Optimiz. NEMO 2016, Beijing, China, 2016, pp. 209-210 (DOI: 10.1109/NEMO.2016.7561668).
- [5] D. Dealandes and K. Wu, „Single-substrate integration techniques for planar circuits and waveguide filters", IEEE Trans. Microw. Theory Techn., vol. 51, no. 2, 593-596, 2003 (DOI: 10.1109/TMTT.2002.807820).
- [6] S. Moscato, R. Moro, M. Pasian, M. Bozzi, and L. Perregrini, „Two-material ridge substrate integrated waveguide for ultra-wideband applications", IEEE Trans. Microw. Theory Techn., vol. 63, no. 10, pp. 3175-3182, 2015 (DOI: 10.1109/TMTT.2015.2461612).
- [7] R. J. Cameron, „Advanced coupling matrix synthesis techniques for microwave filters", IEEE Trans. on Microw. Theory and Techn., vol. 51, no. 1, 2003 (DOI: 10.1109/TMTT.2002.806937).
- [8] R. Bouhmidi, B. Bouras, and M. Chetioui, „Multi-ports extraction technique for microwave passband filter optimization", Int. J. of Microw. and Opt. Technol. (IJMOT), vol. 14, no. 6, pp. 431-439, 2019 [Online]. Available: https://ijmot.com/VOL-14-NO-6.aspx
- [9] X.-P. Chen and K. Wu, „Substrate integrated waveguide filter: Basic design rules and fundamental structure features", IEEE Microw. Mag., vol. 15, no. 5, pp. 108-116, 2014 (DOI: 10.1109/MMM.2014.2321263).
- [10] F. Xu and K. Wu, „Guided-wave and leakage characteristics of substrate integrated waveguide", IEEE Trans. on Microw. Theory and Techn., vol. 53, no. 1, pp. 66-73, 2005 (DOI: 10.1109/TMTT.2004.839303).
- [11] F. Parment, A. Ghiotto, T. P. Vuong, J. M. Duchamp, and K. Wu, „Air-filled substrate integrated waveguide for low-loss and high powerhandling millimeter-wave substrate integrated circuits", IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1228-1238, 2015 (DOI: 10.1109/TMTT.2015.2408593).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91712d2e-fa8c-4170-ba09-6f686f6787e7