PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

To determine the performance of metakaolin‑based fiber‑reinforced geopolymer concrete with recycled aggregates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present research, geopolymer concrete for construction applications comprising metakaolin was evaluated by partial addition of recycled coarse aggregates and steel fibers to develop eco-friendly cementitious composites. Mechanical and durability characteristics of geopolymer composites were then assessed such as compression, splitting tensile and flexural strength, water absorption, and drying shrinkage. It was observed that with the inclusion of steel fibers, no significant change in compressive strength occurred. Mixtures were prepared with a binder amount of 440 kg/m3 in total. The recycled coarse aggregates were substituted with natural coarse aggregates at a rate of 15, 25, and 35% by their weight. The inclusion of steel fibers in the mixes was 1.0, 2.0, and 3.0% of metakaolin content. Because of the addition of steel fibers, the split tensile strength, flexural strength, and drying shrinkage were improved significantly. The load-displacement graph showed that the fracture toughness of geopolymer composites was enhanced due to the inclusion of steel fibers which leads to maximum loads capacity. From the stress-strain curve, it was observed that the geopolymer paste and the steel fibers had a strong bond, which will help in restraining the propagation of cracks. From XRD analysis, it was shown that a mix having 25% recycled coarse aggregates and 3.0% steel fibers in metakaolin-based geopolymer concrete results in environment-friendly composite with suitable strength and durability that will help in bringing sustainability to the construction industry.
Rocznik
Strony
art. no. e114
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Structure Engineering, Military College of Engineering, Risalpur, National University of Sciences and Technology, Islamabad 44000, Pakistan
  • Department of Mining Technology, Topography and Structures, University of Leon, Campus de Vegazana s/n, 24071 Leon, Spain
  • Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
  • Department of Mining Technology, Topography and Structures, University of Leon, Campus de Vegazana s/n, 24071 Leon, Spain
  • Department of Civil Engineering, University of Science and Technology, Sana’a, Yemen
  • Department of Applied Physics, University of Leon, Campus de Vegazana s/n, 24071 Leon, Spain
Bibliografia
  • 1. Zaid O, Hashmi SRZ, Aslam F, Abedin ZU, Ullah A. Experimental study on the properties improvement of hybrid graphene oxide fiber-reinforced composite concrete. Diam Relat Mater. 2022. https://doi.org/10.1016/j.diamond.2022.108883.
  • 2. Zaid O, Aslam F, Alabduljabbar H. To evaluate the performance of waste marble powder and wheat straw ash in steel fiber reinforced concrete. Struct Concr. 2021. https://doi.org/10.1002/suco.20210 0736.
  • 3. Naik TR. Sustainability of concrete construction. Pract Period Struct Des Constr. 2008;13(2):98-103.
  • 4. Zaid O, Ahmad J, Siddique MS, Aslam F, Alabduljabbar H, Khedher KM. A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate. Sci Rep. 2021;11(1):1-14.
  • 5. Medina G, Del Bosque IFS, Frias M, De Rojas MIS, Medina C. Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): Scientific and technical considerations. J Clean Prod. 2017;148:467-76.
  • 6. Ascensao G, Seabra MP, Aguiar JB, Labrincha JA. Red mudbased geopolymers with tailored alkali diffusion properties and pH buffering ability. J Clean Prod. 2017;148:23-30.
  • 7. Diaz-Loya EI, Allouche E, Vaidya S. Mechanical properties of fly-ash-based geopolymer concrete. Aci Mater J. 2011;108:300-6.
  • 8. Zaid O, Ahmad J, Siddique MS, Aslam F. Effect of incorporation of rice husk ash instead of cement on the performance of steel fibers reinforced concrete. Front Mater. 2021;8:14-28. https://doi.org/10.3389/fmats.2021.665625.
  • 9. Wardhono A, Law DW, Strano A. The strength of alkali-activated slag/fly ash mortar blends at ambient temperature. Procedia Eng. 2015;125:650-6. https://doi.org/10.1016/j.proeng.2015.11.095.
  • 10. SOM. Low-clinker cements with low water demand. J Mater Civ Eng. 2020;32(7):6020008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003241.
  • 11. Smirnova O, Kazanskaya L, Koplik J, Tan H, Gu X. Concrete based on clinker-free cement: selecting the functional unit for environmental assessment. Sustainability. 2021. https://doi.org/10.3390/su13010135.
  • 12. Verdolotti L, Iannace S, Lavorgna M, Lamanna R. Geopolymerization reaction to consolidate incoherent pozzolanic soil. J Mater Sci. 2008;43(3):865-73.
  • 13. Mohseni E. Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites. Constr Build Mater. 2018;186:904-11. https://doi.org/10.1016/j.conbuildmat.2018.08.032.
  • 14. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42(9):2917-33.
  • 15. Mehrinejadhotbehsara M, Mohseni E, Ozbakkaloglu T, Ranjbar MM. Durability characteristics of self-compacting concrete incorporating pumice and metakaolin. J Mater Civ Eng. 2017;29(11):4017218.
  • 16. Ramlochan T, Thomas M, Gruber KA. The effect of metakaolin on alkali-silica reaction in concrete. Cem Concr Res. 2000;30(3):339-44.
  • 17. Kamseu E, Cannio M, Obonyo EA, Tobias F, Bignozzi MC, Sglavo VM, Leonelli C. Metakaolin-based inorganic polymer composite: Effects of fine aggregate composition and structure on porosity evolution, microstructure and mechanical properties. Cem Concr Compos. 2014;53:258-69.
  • 18. Pouhet R, Cyr M. Formulation and performance of flash metakaolin geopolymer concretes. Constr Build Mater. 2016;120:150-60.
  • 19. Yang T, Zhu H, Zhang Z. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Constr Build Mater. 2017;153:284-93.
  • 20. Saafi M, Tang L, Fung J, Rahman M, Liggat J. Enhanced properties of graphene/fly ash geopolymeric composite cement. Cem Concr Res. 2015. https://doi.org/10.1016/j.cemconres.2014.08.011.
  • 21. Saradar A, Tahmouresi B, Mohseni E, Shadmani A. Restrained shrinkage cracking of fiber-reinforced high-strength concrete. Fibers. 2018;6(1):12.
  • 22. J Clarke, C Peaston, N Swannell. Guidance on the use of macrosynthetic-fibre reinforced concrete. The Concrete Society. Technical Report, 2007.
  • 23. Allahverdi A, Škvara F. Sulfuric acid attack on hardened paste of geopolymer cements Part 1. Mechanism of corrosion at relatively high concentrations. Ceram Silikaty. 2005;49:225-9.
  • 24. Ahmad J, Zaid O, Aslam F, Shahzaib M, Ullah R, Alabduljabbar H, Khedher KM. A study on the mechanical characteristics of glass and nylon fiber reinforced peach shell lightweight concrete. Materials (Basel). 2021;14(16):21-41. https://doi.org/10.3390/ma141 64488.
  • 25. Mohseni E, Yazdi MA, Miyandehi BM, Zadshir M, Ranjbar MM. Combined effects of metakaolin, rice husk ash, and polypropylene fiber on the engineering properties and microstructure of mortar. J Mater Civ Eng. 2017;29(7):4017025.
  • 26. Nath P, Sarker P. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr Build Mater. 2017;130:22-31. https://doi.org/10.1016/j.conbuildmat.2016.11.034.
  • 27. Afroughsabet V, Biolzi L, Ozbakkaloglu T. High-performance fiber-reinforced concrete: a review. J Mater Sci. 2016;51:1-35. https://doi.org/10.1007/s10853-016-9917-4.
  • 28. Smirnova OM, de Navascues I, Mikhailevskii VR, Kolosov OI, Skolota NS. Sound-absorbing composites with rubber crumb from used tires. Appl Sci. 2021. https://doi.org/10.3390/app11167347.
  • 29. AE Richardson. Compressive strength of concrete with polypropylene fibre additions. Struct Surv. 2006.
  • 30. Afroughsabet V, Ozbakkaloglu T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr Build Mater. 2015;94:73-82.
  • 31. Punurai W, Kroehong W, Saptamongkol A, Chindaprasirt P. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Constr Build Mater. 2018;186:62-70.
  • 32. High C, Seliem HM, El-Safty A, Rizkalla SH. Use of basalt fibers for concrete structures. Constr Build Mater. 2015;96:37-46.
  • 33. Zaid O, Mukhtar FM, M-Garcia R, El Sherbiny MG, Mohamed AM. Characteristics of high-performance steel fiber reinforced recycled aggregate concrete utilizing mineral filler. Case Stud Constr Mater. 2022;16:e00939. https://doi.org/10.1016/j.cscm.2022.e00939.
  • 34. Bhutta A, Borges PHR, Zanotti C, Farooq M, Banthia N. Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cem Concr Compos. 2017;80:31-40.
  • 35. Ghalehnovi M, Karimipour A, Anvari A, de Brito J. Flexural strength enhancement of recycled aggregate concrete beams with steel fibre-reinforced concrete jacket. Eng Struct. 2021;240: 112325. https://doi.org/10.1016/j.engst ruct.2021.112325.
  • 36. Ahmad J, Alalaien RNS, Manan A, Zaid O, Ahmad M. Evaluating the effects of flexure cracking behaviour of beam reinforced with steel fibres from environment affect. J Green Eng. 2020;10:4998-5016.
  • 37. Nuaklong P, Sata V, Chindaprasirt P. Influence of recycled aggregate on fly ash geopolymer concrete properties. J Clean Prod. 2016;112:2300-7.
  • 38. Khan Q, Mushtaq M, Khan S, Kiani M, Zaman F, Khan K, Mehmood I, Tahir K, Tareen AK, Khan U, Leying Z. Enhancement of mechanical and electrical properties for in-situ compatibilization of immiscible polypropylene/polystyrene blends. Mater Res Express. 2019. https://doi.org/10.1088/2053-1591/ab3599.
  • 39. M Ali, M Mushtaq, M Ahmed, R Abbas. effect of oxidant concentration on the conductivity of polyaniline (Pani). 2016.
  • 40. Chopra D, Siddique R. Strength, permeability and microstructure of self-compacting concrete containing rice husk ash. Biosyst Eng. 2015;130:72-80.
  • 41. Muthupriya P, Manjunath NV, Keerdhana B. Strength study on fiber reinforced self-compacting concrete with fly ash and GGBFS. Int J Adv Struct Geotech Eng. 2014;3(2):75-9.
  • 42. Thomas J, Thaickavil NN, Wilson PM. Strength and durability of concrete containing recycled concrete aggregates. J Build Eng. 2018;19:349-65.
  • 43. Malešev M, Radonjanin V, Marinković S. Recycled concrete as aggregate for structural concrete production. Sustainability. 2010;2(5):1204-25. https://doi.org/10.3390/su2051204.
  • 44. Al-Majidi MH, Lampropoulos A, Cundy AB. Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties. Constr Build Mater. 2017;139:286-307.
  • 45. C. ASTM. 33/C33M, Stand Specif Concr aggregates. Annu B ASTM Stand 2008;4:498-505.
  • 46. Alves L, Leklou N, de Barros S. A comparative study on the effect of different activating solutions and formulations on the early stage geopolymerization process. MATEC Web Conf. 2020;322:1039. https://doi.org/10.1051/matec conf/202032201039.
  • 47. Puertas F, S Martı́nez-Ramı́rez, S Alonso, T Vazquez,. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem Concr Res. 2000;30(10):1625-32. https://doi.org/10.1016/S0008-8846(00)00298-2.
  • 48. D Hardjito. ACI Materials. Journal. 2004; 467-472.
  • 49. C. ASTM. “ASTM C494,” Stand. Specif. Chem. Admixtures Concr. ASTM Int.
  • 50. ASTM C 143. Standard test method for slump of hydraulic-cement concrete. 2015.
  • 51. ASTM C 642. Standard test method for specific gravity, absorption and voids in hardened concrete. Annual Book of ASTM Standards, West Conshohocken. 1997.
  • 52. ASTM C 496/-11. Standard test method for splitting tensile strength of cylindrical concrete specimens. 2011.
  • 53. A. Standard. “C78. 2010,” Stand. Test Method Flexural Strength Concr. (Using Simple Beam with Third-Point Load. (ASTM C78-10). West Conshohocken, PA ASTM Int., 2010.
  • 54. Sun W, Chen H, Luo X, Qian H. The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete. Cem Concr Res. 2001;31(4):595-601.
  • 55. Das CS, Dey T, Dandapat R, Mukharjee BB, Kumar J. Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete. Constr Build Mater. 2018;189:649-59. https://doi.org/10.1016/j.conbuildmat.2018.09.036.
  • 56. Ahmad J, Zaid O, Perez CL-C, Martinez-Garcia R, Lopez-Gayarre F. Experimental research on mechanical and permeability properties of nylon fiber reinforced recycled aggregate concrete with mineral admixture. Appl Sci. 2022. https://doi.org/10.3390/app12020554.
  • 57. Anastasiou E, Georgiadis Filikas K, Stefanidou M. Utilization of fine recycled aggregates in concrete with fly ash and steel slag. Constr Build Mater. 2014;50:154-61. https://doi.org/10.1016/j.conbuildmat.2013.09.037.
  • 58. Nuaklong P, Wongsa A, Boonserm K, Ngohpok C, Jongvivatsakul P, Sata V, Sukontasukkul P, Chindaprasirt P. Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. J Build Eng. 2021;41: 102403. https://doi.org/10.1016/j.jobe.2021.102403.
  • 59. Villaquiran-Caicedo M, Mejia R, Gallego N. A novel MK-based geopolymer composite activated with rice husk ash and KOH: performance at high temperature. Mater Constr. 2017;67:117. https://doi.org/10.3989/mc.2017.02316.
  • 60. Rahal K. Mechanical properties of concrete with recycled coarse aggregate. Build Environ. 2007;42(1):407-15.
  • 61. ACI 318-14. ACI 318-14 Building code requirements for structural concrete and commentary. Farmington Hills: American Concrete Institute; 2014.
  • 62. Carneiro JA, Lima PRL, Leite MB, Toledo Filho RD. Compressive stress-strain behavior of steel fiber reinforced-recycled aggregate concrete. Cem Concr Compos. 2013;46(65-72):2014. https://doi.org/10.1016/j.cemconcomp.2013.11.006.
  • 63. Mohseni E, Ranjbar MM, Yazdi MA, Hosseiny SS, Roshandel E. The effects of silicon dioxide, iron (III) oxide and copper oxide nanomaterials on the properties of self-compacting mortar containing fly ash. Mag Concr Res. 2015;67(20):1112-24.
  • 64. Kou SC, Poon CS, Etxeberria M. Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cem Concr Compos. 2014;53:73-82. https://doi.org/10.1016/j.cemconcomp.2014.06.001.
  • 65. Pan Z, Sanjayan J, Rangan B. An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature. J Mater Sci. 2009;44:1873-80. https://doi.org/10.1007/s10853-009-3243-z.
  • 66. Hussin M, Putra Jaya R, Mirza J, Ariffin MA, Bhutta A. Performance of blended ash geopolymer concrete at elevated temperatures. Mater Struct. 2014. https://doi.org/10.1617/s11527-014-0251-5.
  • 67. Rashad A, Zeedan S. The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr Build Mater. 2011;25:3098-107. https://doi.org/10.1016/j.conbuildmat.2010.12.044.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91711bcf-d541-4054-8658-5bfd0ce28052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.